Advertisement

Electronic Materials Letters

, Volume 15, Issue 3, pp 278–286 | Cite as

Synthesis of SrTiO3 Fibers and Their Effects on the Thermoelectric Properties of La0.1Dy0.1Sr0.75TiO3 Ceramics

  • Jiao Han
  • YiMing Zeng
  • Ying SongEmail author
  • HongQuan LiuEmail author
Original Article - Electronics, Magnetics and Photonics
  • 104 Downloads

Abstract

SrTiO3 fibers were fabricated by an in situ hydrothermal method using hydrated TiO2 fibers as both template and reactant. La0.1Dy0.1Sr0.75TiO3 powders containing x wt.% SrTiO3 fibers (x = 0, 1, 3, 5) were prepared by the sol–gel method and then sintered at 1450 °C under a reducing atmosphere (N2/H2 = 95/5). XRD analysis showed that the samples were mainly composed of SrTiO3 phase and a few Dy2Ti2O7 phase. TiO2 phase was detected in the samples with x = 3 and x = 5, and its peak intensity clearly reinforced with increasing x. With the addition of SrTiO3 fibers, the electrical conductivity increased significantly and the Seebeck coefficient kept almost unchanged, resulting in a high power factor of 1015 μW m−1 K−2 at 200 °C with a loading of 3 wt.% SrTiO3 fibers. Meanwhile, combined with low thermal conductivity, the sample with 3 wt.% SrTiO3 fibers showed the peak ZT value of 0.19 at 500 °C, which was 127% higher than that of La0.1Dy0.1Sr0.75TiO3.

Graphical Abstract

Keywords

SrTiO3 fibers Strontium titanium La/Dy co-doped Thermoelectric properties 

Notes

Acknowledgements

The authors would like to thank the financial supports from Shandong Natural Science Foundation Project (Grant No. ZR2015EM013).

References

  1. 1.
    Zhao, L.D., Lo, S.H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhao, L.D., Dravid, V.P., Kanatzidis, M.G.: The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 7, 251–268 (2014)CrossRefGoogle Scholar
  3. 3.
    Fergus, J.W.: Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32, 525–540 (2012)CrossRefGoogle Scholar
  4. 4.
    Ohta, H., Kim, S., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T., Nakanishi, Y., Ikuhara, Y., Hirano, M., Hosono, H., Koumoto, K.: Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129–134 (2007)CrossRefGoogle Scholar
  5. 5.
    Kovalevsky, A.V., Yaremchenko, A.A., Populoh, S., Weidenkaff, A., Frade, J.R.: Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution. J. Appl. Phys. 113, 053704 (2013)CrossRefGoogle Scholar
  6. 6.
    Liu, D., Zhang, Y., Kang, H., Li, J., Chen, Z., Wang, T.: Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering. J. Eur. Ceram. Soc. 38, 807–811 (2018)CrossRefGoogle Scholar
  7. 7.
    Wang, H.C., Wang, C.L., Su, W.B., Liu, J., Zhao, Y., Peng, H., Zhang, J.L., Zhao, M.L., Li, J.C., Yin, N., Mei, L.M.: Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic. Mater. Res. Bull. 45, 809–812 (2010)CrossRefGoogle Scholar
  8. 8.
    Wang, H.C., Wang, C.L., Su, W.B., Liu, J., Sun, Y., Peng, H., Mei, L.M.: Doping effect of La and Dy on the thermoelectric properties of SrTiO3. J. Am. Ceram. Soc. 94, 838–842 (2011)CrossRefGoogle Scholar
  9. 9.
    Khan, T.T., Ur, S.C.: Thermoelectric properties of the perovskite-type oxide SrTi1−xNbxO3 synthesized by solid-state reaction method. Electron. Mater. Lett. 14, 1–6 (2018)CrossRefGoogle Scholar
  10. 10.
    Cui, Y., He, J., Amow, G., Kleinke, H.: Thermoelectric properties of n-type double substituted SrTiO3 bulk materials. Dalton Trans. 39, 1031–1035 (2010)CrossRefGoogle Scholar
  11. 11.
    Thong, T.Q., Huong, L.T.T., Tinh, N.T.: Investigation of the influence of singly and dually doping effect on scattering mechanisms and thermoelectric properties of perovskite-type STO. Mater. Trans. 56, 1365–1369 (2015)CrossRefGoogle Scholar
  12. 12.
    Yu, C., Scullin, M.L., Huijben, M., Ramesh, R., Majumdar, A.: Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl. Phys. Lett. 92, 191911 (2008)CrossRefGoogle Scholar
  13. 13.
    Dang, F., Wan, C., Park, N.H., Tsuruta, K., Seo, W.S., Koumoto, K.: Thermoelectric performance of SrTiO3 enhanced by nanostructuring—self-assembled particulate film of nanocubes. ACS Appl. Mater. Inter. 5, 10933–10937 (2013)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Fujinami, K., Zhang, R., Wan, C., Wang, N., Ba, Y., Koumoto, K.: Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl. Phys. Express 3, 031101 (2010)CrossRefGoogle Scholar
  15. 15.
    Wang, N., He, H., Ba, Y., Wan, C., Koumoto, K.: Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J. Ceram. Soc. Jpn. 118, 1098–1101 (2010)CrossRefGoogle Scholar
  16. 16.
    Wang, N., Chen, H., He, H., Norimatsu, W., Kusunoki, M., Koumoto, K.: Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci. Rep. 3, 3449 (2013)CrossRefGoogle Scholar
  17. 17.
    Srivastava, D., Norman, C., Azough, F., Schäfer, M.C., Guilmeau, E., Freer, R.: Improving the thermoelectric properties of SrTiO3-based ceramics with metallic inclusions. J. Alloys Compd. 731, 723–730 (2018)CrossRefGoogle Scholar
  18. 18.
    Lin, Y., Norman, C., Srivastava, D., Azough, F., Wang, L., Robbins, M., Simpson, K., Freer, R., Kinloch, I.A.: Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7, 15898–15908 (2015)CrossRefGoogle Scholar
  19. 19.
    Han, J., Sun, Q., Song, Y.: Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics. J. Alloys Compd. 705, 22–27 (2017)CrossRefGoogle Scholar
  20. 20.
    Shimizu, T., Yanagida, H., Hashimoto, K.: Synthesis of potassium titanate fibers by Kneading–Drying–Calcination process. J. Ceram. Assoc. Jpn. 86, 339–344 (1978)CrossRefGoogle Scholar
  21. 21.
    Wang, F.P., Song, Y., Jiang, Z.H., Wang, J., Zhou, Y.: The preparation of hydrated titanium dioxide fiber and its phase transition process. J. Mater. Sci. Technol. 1, 64–66 (1999)Google Scholar
  22. 22.
    Ng, J., Xu, S., Zhang, X., Yang, H.Y., Sun, D.D.: Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv. Funct. Mater. 20, 4287–4294 (2010)CrossRefGoogle Scholar
  23. 23.
    Cao, T., Li, Y., Wang, C., Shao, C., Liu, Y.: A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27, 2946–2952 (2011)CrossRefGoogle Scholar
  24. 24.
    Li, Y., Gao, X.P., Li, G.R., Pan, G.L., Yan, T.Y., Zhu, H.Y.: Titanate nanofiber reactivity: fabrication of MTiO3 (M = Ca, Sr, and Ba) perovskite oxides. J. Phys. Chem. C 113, 4386–4394 (2009)CrossRefGoogle Scholar
  25. 25.
    Bäurer, M., Kungl, H., Hoffmann, M.J.: Influence of Sr/Ti stoichiometry on the densification behavior of strontium titanate. J. Am. Ceram. Soc. 92, 601–606 (2009)CrossRefGoogle Scholar
  26. 26.
    Chan, N., Sharma, R., Smyth, D.: Nonstoichiometry in SrTiO. J. Electrochem. Soc. 125, 1762–1769 (1981)CrossRefGoogle Scholar
  27. 27.
    Biswas, K., He, J., Blum, I.D., Wu, C.I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum MetalsKunming Institute of Precious MetalsKunmingPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.College of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations