Improved Device Ideality in Aged Organic Transistors
Original Article - Electronics, Magnetics and Photonics
First Online:
- 75 Downloads
Abstract
The origin of ideality improvement in aged dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) transistors is explored. High-performance plastic transistors exhibit nontrivial enhancements under ambient conditions, in the light of emerging parameterization scheme that elucidates the linearity of the transfer curves. Unintentional carrier doping in exceptionally stable DNTT molecules is suggested as the major driver of the recovery of an ideal state of the functional devices, thoroughly investigated by analytical decoupling of the channel and contact potentials as well as numerical finite-element simulation on parametric interplays.
Graphical Abstract
Keywords
Organic semiconductors Field-effect transistors DNTT Device ideality AgingNotes
Acknowledgements
This work was supported by the Gachon University research fund of 2018 (GCU-2018-0290).
References
- 1.de Mello, J., Anthony, J., Lee, S.: Organic electronics: recent developments. ChemPhysChem 16, 1099–1100 (2015)CrossRefGoogle Scholar
- 2.Kim, C.-H., Bonnassieux, Y., Horowitz, G.: Compact DC modeling of organic field-effect transistors: review and perspectives. IEEE Trans. Electron. Devices 61, 278–287 (2014)CrossRefGoogle Scholar
- 3.Blülle, B., Troisi, A., Häusermann, R., Batlogg, B.: Charge transport perpendicular to the high mobility plane in organic crystals: bandlike temperature dependence maintained despite hundredfold anisotropy. Phys. Rev. B 93, 035205 (2016)CrossRefGoogle Scholar
- 4.Bittle, E.G., Basham, J.I., Jackson, T.N., Jurchescu, O.D., Gundlach, D.J.: Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016)CrossRefGoogle Scholar
- 5.Liu, C., Li, G., Di Pietro, R., Huang, J., Noh, Y.-Y., Liu, X., Minari, T.: Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 8, 034020 (2017)CrossRefGoogle Scholar
- 6.Paterson, A.F., Singh, S., Fallon, K.J., Hodsden, T., Han, Y., Schroeder, B.C., Bronstein, H., Heeney, M., McCulloch, I., Anthopoulos, T.D.: Recent progress in high-mobility organic transistors: a reality check. Adv. Mater. 31, 1801079 (2018)CrossRefGoogle Scholar
- 7.Choi, H.H., Cho, K., Frisbie, C.D., Sirringhaus, H., Podzorov, V.: Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2–7 (2017)CrossRefGoogle Scholar
- 8.Jung, S., Kim, C.-H., Bonnassieux, Y., Horowitz, G.: Fundamental insights into the threshold characteristics of organic field-effect transistors. J. Phys. D Appl. Phys. 48, 035106 (2015)CrossRefGoogle Scholar
- 9.Park, S.K., Mourey, D.A., Han, J.-I., Anthony, J.E., Jackson, T.N.: Environmental and operational stability of solution-processed 6,13-bis(triisopropyl-silylethynyl) pentacene thin film transistors. Org. Electron. 10, 486–490 (2009)CrossRefGoogle Scholar
- 10.Yamamoto, T., Takimiya, K.: Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J. Am. Chem. Soc. 129, 2224–2225 (2007)CrossRefGoogle Scholar
- 11.Zschieschang, U., Ante, F., Kälblein, D., Yamamoto, T., Takimiya, K., Kuwabara, H., Ikeda, M., Sekitani, T., Someya, T., Blochwitz-Nimoth, J., Klauk, H.: Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. Org. Electron. 12, 1370–1375 (2011)CrossRefGoogle Scholar
- 12.Kim, C.-H., Kymissis, I.: Graphene–organic hybrid electronics. J. Mater. Chem. C 5, 4598–4613 (2017)CrossRefGoogle Scholar
- 13.Natali, D., Caironi, M.: Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods. Adv. Mater. 24, 1357–1387 (2012)CrossRefGoogle Scholar
- 14.Estrada, M., Cerdeira, A., Puigdollers, J., Reséndiz, L., Pallares, J., Marsal, L.F., Voz, C., Iñiguez, B.: Accurate modeling and parameter extraction method for organic TFTs. Solid-State Electron. 49, 1009–1016 (2005)CrossRefGoogle Scholar
- 15.Hasegawa, Y., Yamada, Y., Hosokai, T., Koswattage, K.R., Yano, M., Wakayama, Y., Sasaki, M.: Overlapping of frontier orbitals in well-defined dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene and picene monolayers. J. Phys. Chem. C 120, 21536–21542 (2016)CrossRefGoogle Scholar
- 16.Kim, C.-H., Hlaing, H., Payne, M.M., Yager, K.G., Bonnassieux, Y., Horowitz, G., Anthony, J.E., Kymissis, I.: Strongly correlated alignment of fluorinated 5,11-bis (triethylgermylethynyl)anthradithiophene crystallites in solution-processed field-effect transistors. ChemPhysChem 15, 2913–2916 (2014)CrossRefGoogle Scholar
- 17.Bürgi, L., Richards, T.J., Friend, R.H., Sirringhaus, H.: Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 94, 6129–6137 (2003)CrossRefGoogle Scholar
- 18.Chiarella, F., Barra, M., Carella, A., Parlato, L., Sarnelli, E., Cassinese, A.: Contact-resistance effects in PDI8-CN2 n-type thin-film transistors investigated by Kelvin-probe potentiometry. Org. Electron. 28, 299–305 (2016)CrossRefGoogle Scholar
- 19.Kim, C.H., Bonnassieux, Y., Horowitz, G.: Fundamental benefits of the staggered geometry for organic field-effect transistors. IEEE Electron. Device Lett. 32, 1302–1304 (2011)CrossRefGoogle Scholar
- 20.Wang, S.D., Yan, Y., Tsukagoshi, K.: Understanding contact behavior in organic thin film transistors. Appl. Phys. Lett. 97, 063307 (2010)CrossRefGoogle Scholar
- 21.Kim, C.H., Yaghmazadeh, O., Tondelier, D., Jeong, Y.B., Bonnassieux, Y., Horowitz, G.: Capacitive behavior of pentacene-based diodes: quasistatic dielectric constant and dielectric strength. J. Appl. Phys. 109, 083710 (2011)CrossRefGoogle Scholar
- 22.Kim, C.H., Kisiel, K., Jung, J., Ulanski, J., Tondelier, D., Geffroy, B., Bonnassieux, Y., Horowitz, G.: Persistent photoexcitation effect on the poly(3-hexylthiophene) film: impedance measurement and modeling. Synth. Met. 162, 460–465 (2012)CrossRefGoogle Scholar
- 23.Kalb, W.L., Batlogg, B.: Calculating the trap density of states in organic field-effect transistors from experiment: a comparison of different methods. Phys. Rev. B 81, 035327 (2010)CrossRefGoogle Scholar
Copyright information
© The Korean Institute of Metals and Materials 2018