Advertisement

High Performance Supercapacitor Applications and DC Electrical Conductivity Retention on Surfactant Immobilized Macroporous Ternary Polypyrrole/Graphitic-C3N4@Graphene Nanocomposite

  • Ahmed Alshahrie
  • Mohammad Omaish Ansari
Original Article - Nanomaterials
  • 13 Downloads

Abstract

Electrically conductive conducting polymer nanocomposites with carbonaceous materials have attraction the attention worldwide in resolving the energy crisis for economic reasons, ease of fabrication and easily controllable variable redox chemical states. In this work, highly conducting polypyrrole/g-C3N4@graphene (PPy/g-C3N4@GN) has been fabricated by polymerizing pyrrole with g-C3N4 along with surfactant para toluene sulfonic acid (pTSA) and later incorporating it with GN by hydrothermal methodology to form a macroporous network of pTSA doped PPy/g-C3N4@GN. Thus prepared PPy/g-C3N4@GN composite was characterized for the morphological characterizations by scanning electron microscopy, transmission electron microscopy while the structural characterizations were done by X-ray powder diffraction and X-ray photoelectron spectroscopy. The morphological analysis showed that the PPy and g-C3N4 were well distributed inside the GN sheets thereby forming structures of high porosity. The PPy and g-C3N4 were sandwiched between the sheets of GN and such morphology is expected to promote the electron transfer. The PPy/g-C3N4@GN composite showed high conductivity of 8.8 S/cm and exceptionally high thermal stability in aging thermal conductivity experiments. The high conductivity and stability is attributed to the contribution of following factors i.e. the high stability of g-C3N4, high conductivity of GN and PPy. Three electrode assembly was used to study the electrochemical supercapacitive characteristics; cyclic voltammetric curves and galvanostatic charge discharge measurements of PPy/g-C3N4@GN. The obtained nanocomposite delivered high capacitance of 260.4 F g−1 at a current load of 1 A g−1 as well as excellent 80% cyclic stability after the continuous 2000 charge discharge cycles. The enhanced performance is due the interaction between all the constituents in the present nanocomposites and improved electrical conductivity.

Graphical Abstract

Keywords

Polypyrrole Graphene Macroporous Conductivity retention Energy storage 

Notes

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-87-130-1438). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Supplementary material

13391_2018_107_MOESM1_ESM.docx (9 mb)
Supplementary material 1 (DOCX 9180 kb)

References

  1. 1.
    Jang, G.S., Ameen, S., Akhtar, M.S., Shin, H.S.: Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 44, 588–595 (2018)CrossRefGoogle Scholar
  2. 2.
    Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  3. 3.
    Liu, T., Shao, G., Ji, M., Wang, G.: Polyaniline/MnO2 composite with high performance as supercapacitor electrode via pulse electrodeposition. Polym. Compos. 36, 113–120 (2015)CrossRefGoogle Scholar
  4. 4.
    Feng, X.M., Chen, N., Zhang, Y., Yan, Z.Z., Liu, X.F., Ma, Y.W., Shen, Q.M., Wang, L.H., Huang, W.: The self-assembly of shape controlled functionalized graphene–MnO2 composites for application as supercapacitors. J. Mater. Chem. A 2, 9178–9184 (2014)CrossRefGoogle Scholar
  5. 5.
    Feng, X., Yan, Z., Chen, N., Zhang, Y., Liu, X., Ma, Y., Yang, X., Hou, W.: Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor. New J. Chem. 37, 2203–2209 (2013)CrossRefGoogle Scholar
  6. 6.
    Parveen, N., Ansari, M.O., Cho, M.H.: Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance. RSC Adv. 5, 44920–44927 (2015)CrossRefGoogle Scholar
  7. 7.
    Mujawar, S.H., Ambade, S.B., Battumur, T., Ambade, R.B., Lee, S.H.: Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim. Acta 56, 4462–4466 (2011)CrossRefGoogle Scholar
  8. 8.
    Eftekhari, A., Li, L., Yang, Y.: Polyaniline supercapacitors. J. Power Sour. 347, 86–107 (2017)CrossRefGoogle Scholar
  9. 9.
    Yang, X., He, Y., Bai, Y., Zhang, J., Kang, L., Xu, H., Shi, F., Lei, Z., Liu, Z.H.: Mn3O4 nanocrystalline/graphene hybrid electrode with high capacitance. Electrochim. Acta 188, 398–405 (2016)CrossRefGoogle Scholar
  10. 10.
    Mondal, S.K., Barai, K., Munichandraiah, N.: High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate. Electrochim. Acta 52, 3258–3264 (2007)CrossRefGoogle Scholar
  11. 11.
    Zhang, Q., Zhou, A., Wang, J., Wu, J., Bai, H.: Degradation-induced capacitance: a new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci. 10, 2372–2382 (2017)CrossRefGoogle Scholar
  12. 12.
    Yuksel, R., Alpugan, E., Unalan, H.E.: Coaxial silver nanowire/polypyrrole nanocomposite supercapacitors. Organ. Electron. 52, 272–280 (2018)CrossRefGoogle Scholar
  13. 13.
    Deng, W., Liang, X., Wu, X., Qian, J., Cao, Y., Ai, X., Feng, J., Yang, H.: A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3, 2671 (2013)CrossRefGoogle Scholar
  14. 14.
    Aphale, A., Maisuria, K., Mahapatra, M.K., Santiago, A., Singh, P., Patra, P.: Hybrid electrodes by in-situ integration of graphene and carbon-nanotubes in polypyrrole for supercapacitors. Sci. Rep. 5, 14445 (2015)CrossRefGoogle Scholar
  15. 15.
    Li, Q., Xu, D., Guo, J., Ou, X., Yan, F.: Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis. Carbon 124, 599–610 (2017)CrossRefGoogle Scholar
  16. 16.
    Chen, Q., Zhao, Y., Huang, X., Chen, N., Qu, L.: Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. J. Mater. Chem. A 3, 6761–6766 (2015)CrossRefGoogle Scholar
  17. 17.
    Ansari, M.O., Mohammad, F.: Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens. Actuat. B Chem. 157, 122–129 (2011)CrossRefGoogle Scholar
  18. 18.
    Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Wei, L., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRefGoogle Scholar
  19. 19.
    Kim, J.E., Han, T.H., Lee, S.H., Kim, J.Y., Ahn, C.W., Yun, J.M., Kim, S.O.: Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50, 3043–3047 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Pan, Q., Chai, G., Liang, M., Dong, G., Zhang, Q., Qiu, J.: Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013)CrossRefGoogle Scholar
  21. 21.
    Kang, G., Borgens, R.B., Cho, Y.: Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir 27, 6179–6184 (2011)CrossRefGoogle Scholar
  22. 22.
    Mishra, S.K., Tripathi, S.N., Choudhary, V., Gupta, B.D.: SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuat. B Chem. 199, 190–200 (2014)CrossRefGoogle Scholar
  23. 23.
    Fina, F., Callear, S.K., Carins, G.M., Irvine, J.T.S.: Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27, 2612–2618 (2015)CrossRefGoogle Scholar
  24. 24.
    Yang, F., Xu, M., Bao, S.J., Wei, H., Chai, H.: Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage. Electrochim. Acta 137, 381–387 (2014)CrossRefGoogle Scholar
  25. 25.
    Feng, X.M., Li, R.M., Ma, Y.W., Chen, R.F., Shi, N.E., Fan, Q.L., Huang, W.: One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv. Funct. Mater. 21, 2989–2996 (2011)CrossRefGoogle Scholar
  26. 26.
    Saoudi, B., Jammul, N., Chehimi, M.M., Jaubert, A.S., Arkam, C., Delamar, M.: XPS study of the adsorption mechanisms of DNA onto polypyrrole particles. Spectroscopy 18, 519–535 (2004)CrossRefGoogle Scholar
  27. 27.
    Fernández, M.J.C., Sierra, R.B., Blas, M.M.P., Soares, O.S.G.P., Pereira, M.F.R., Escribano, A.S.: Green synthesis of polypyrrole-supported metal catalysts: application to nitrate removal in water. RSC Adv. 5, 32706–32713 (2015)CrossRefGoogle Scholar
  28. 28.
    Yang, Y., Xi, Y., Li, J., Wei, G., Klyui, N.I., Han, W.: Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res. Lett. 12, 394 (2017)CrossRefGoogle Scholar
  29. 29.
    Zhao, Q., Wang, X., Xia, H., Liu, J., Wang, H., Gao, J., Zhang, Y., Liu, J., Zhou, H., Li, X., Zhang, S., Wang, X.: Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors. Electrochim. Acta 173, 566–574 (2015)CrossRefGoogle Scholar
  30. 30.
    Ansari, M.O., Mohammad, F.: Thermal stability of HCl-doped-polyaniline and TiO2 nanoparticles-based nanocomposites. J. Appl. Polym. Sci. 124, 4433–4442 (2012)Google Scholar
  31. 31.
    Qu, Y., Lu, C., Su, Y., Cui, D., He, Y., Zhang, C., Cai, M., Zhang, F., Feng, X., Zhuang, X.: Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon 127, 77–84 (2018)CrossRefGoogle Scholar
  32. 32.
    Ansari, M.O., Yadav, S.K., Cho, J.W., Mohammad, F.: Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos. B Eng. 47, 155–161 (2013)CrossRefGoogle Scholar
  33. 33.
    Ansari, M.O., Khan, M.M., Ansari, S.A., Amal, I., Lee, J., Cho, M.H.: pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem. Eng. J. 242, 155–161 (2014)CrossRefGoogle Scholar
  34. 34.
    Zhu, J., Chen, M., Qu, H., Zhang, X., Wei, H., Luo, Z., Colorado, H.A., Wei, S., Guo, Z.: Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 53, 5953–5964 (2012)CrossRefGoogle Scholar
  35. 35.
    Yunhe, X., Jun, L., Wenxin, H.: Porous graphene oxide prepared on nickel foam by electrophoretic deposition and thermal reduction as high-performance supercapacitor electrodes. Materials 10, 936 (2017)CrossRefGoogle Scholar
  36. 36.
    Jaidev, R.I., Jafri, A.K., Mishra, S.: Ramaprabhu, polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J. Mater. Chem. 21, 17601–17605 (2011)CrossRefGoogle Scholar
  37. 37.
    Eeu, Y.C., Lim, H.N., Lim, Y.S., Zakarya, S.A., Huang, N.M.: Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material. J. Nanomater. 653890, 1–6 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Center of NanotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations