Electronic Materials Letters

, Volume 15, Issue 1, pp 61–69 | Cite as

Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance

  • Ga-Yeon Kim
  • Mahesh Peddigari
  • Kyung-Won Lim
  • Geon-Tae Hwang
  • Woon-Ha Yoon
  • HongSoo Choi
  • Jung Woo LeeEmail author
  • Jungho RyuEmail author
Original Article - Energy and Sustainability


The energy harvesting by utilizing the piezoelectric effect for the conversion of oscillatory mechanical energy to useful electrical energy has been promising for self-powered devices. The output power can be controlled by designing the size and shape of the constituents of the harvester. This study demonstrates the effect of Ti plate (elastic layer) thickness on the resonant frequency, neutral axis position, vibration amplitude and energy harvesting performance of the cantilever structured piezoelectric energy harvester (PEH). Here, the each harvester had the same dimensions of piezoelectric layer and the same proof mass position at the end of the cantilever while it had the different elastic layer thicknesses (70–300 μm). The analysis revealed that the output power showed the opposite trend in vibration amplitude with varying the elastic layer thickness. Among all of the PEHs, the configuration with the largest elastic layer thickness (300 μm) exhibited a maximum output power of 48 μW at 76 Hz under 0.2 g acceleration, despite of the smallest vibration amplitude and the highest resonant frequency. The outcomes suggest that the thickness ratio of the piezoelectric and elastic layers should be optimized to realize the best harvesting performance.

Graphical Abstract


Energy harvesting Piezoelectric effect Neutral axis Cantilever Thickness ratio 



This research was supported by the Civil & Military Technology Cooperation Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2014M3C1A9060874) and with the Creative Research Project of the National Science and Technology Council (CAP-17-04-KRISS). Works at YU was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A2B4011663). Works at PNU was supported from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017M3A7B4049466 and NRF-2018R1C1B5045721).


  1. 1.
    Ozger, M., Cetinkaya, O., Akan, O.B.: Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mobile Netw. Appl. 23, 956 (2018)CrossRefGoogle Scholar
  2. 2.
    Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutor. 13, 443 (2011)CrossRefGoogle Scholar
  3. 3.
    Akinaga, H., Fujita, H., Mizuguchi, M., Mori, T.: Focus on advanced materials for energy harvesting: prospects and approaches of energy harvesting technologies. Sci. Technol. Adv. Mater. 19, 543 (2018)CrossRefGoogle Scholar
  4. 4.
    Dondi, D., Bertacchini, A., Larcher, L., Pavan, P., Brunelli, D., Benini, L.: A solar energy harvesting circuit for low power applications. In: Proceedings of IEEE International Conference on Sustainable Energy Technologies (ICSEGT), p. 945 (2008)Google Scholar
  5. 5.
    Iannacci, J., Sordo, G., Serra, E., Schmid, U.: The MEMS four-leaf clover wideband vibration energy harvesting device: design concept and experimental verification. Microsyst. Technol. 22, 1865 (2016)CrossRefGoogle Scholar
  6. 6.
    Wei, C., Jing, X.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sust. Energy Rev. 74, 1 (2017)CrossRefGoogle Scholar
  7. 7.
    Siang, J., Lim, M.H., Salman Leong, M.: Review of vibration-based energy harvesting technology: mechanism and architectural approach. Int. J. Energy Res. 42, 1866 (2018)CrossRefGoogle Scholar
  8. 8.
    Hosseini, R., Hamedi, M., Im, J., Kim, J., Dayou, J.: Analytical and experimental investigation of partially covered piezoelectric cantilever energy harvester. Int. J. Precis. Eng. Manuf. 18, 415 (2017)CrossRefGoogle Scholar
  9. 9.
    Lee, K.H., Kim, S.W.: Design and preparation of high-performance bulk thermoelectric materials with defect structures. J. Korean Ceram. Soc. 54, 75 (2017)CrossRefGoogle Scholar
  10. 10.
    Go, S.H., Kim, D.S., Han, S.H., Kang, H.-W., Lee, H.-G., Cheon, C.I.: Figures of merit of (K, Na, Li)(Nb, Ta)O3 ceramics with various Li contents for a piezoelectric energy harvester. J. Korean Ceram. Soc. 54, 530 (2017)CrossRefGoogle Scholar
  11. 11.
    Priya, S., Song, H.-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.-G., Kanno, I., Wu, L., Ha, D.S., Ryu, J., Polcawich, R.G.: A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest Syst. 4, 3 (2017)Google Scholar
  12. 12.
    Kim, S.K., Kim, J.-H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12, 1129 (2011)CrossRefGoogle Scholar
  13. 13.
    Jin, L., Gao, S., Zhou, X., Zhang, G.: The effect of different shapes of cantilever beam in piezoelectric energy harvesters on their electrical output. Microsyst. Technol. 23, 4805–4814 (2017)CrossRefGoogle Scholar
  14. 14.
    Kambale, R.C., Yoon, W.-H., Park, D.-S., Choi, J.-J., Ahn, C.-W., Kim, J.-W., Hahn, B.-D., Jeong, D.-Y., Chul Lee, B., Chung, G.-S., Ryu, J.: Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3Nb2/3)O3–Pb(Zr, Ti)O3 single crystal/Ni cantilever. J. Appl. Phys. 113, 204108 (2013)CrossRefGoogle Scholar
  15. 15.
    Rajaram Patil, D., Chai, Y., Kambale, R.C., Jeon, B.-G., Yoo, K., Ryu, J., Yoon, W.-H., Park, D.-S., Jeong, D.-Y., Lee, S.-G., Lee, J., Nam, J.-H., Cho, J.-H., Kim, B.-I., Hoon Kim, K.: Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl. Phys. Lett. 102, 062909 (2013)CrossRefGoogle Scholar
  16. 16.
    Cho, J.Y., Kim, K.-B., Jabbar, H., Sin Woo, J., Ahn, J.H., Hwang, W.S., Jeong, S.Y., Cheong, H., Yoo, H.H., Sung, T.H.: Design of optimized cantilever form of a piezoelectric energy harvesting system for a wireless remote switch. Sens. Actuators A Phys. 280, 340 (2018)CrossRefGoogle Scholar
  17. 17.
    Ryu, J., Kang, J.-E., Zhou, Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Kim, Y.-D., Priya, S., Lee, S.Y., Jeong, S., Jeong, D.-Y.: Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8, 2402 (2015)CrossRefGoogle Scholar
  18. 18.
    Chu, Z., Annapureddy, V., PourhosseiniAsl, M., Palneedi, H., Ryu, J., Dong, S.: Dual-stimulus magnetoelectric energy harvesting. MRS Bull. 43, 199 (2018)CrossRefGoogle Scholar
  19. 19.
    Cho, K.-H., Park, H.-Y., Heo, J.S., Priya, S.: Structure–performance relationships for cantilever-type piezoelectric energy harvesters. J. Appl. Phys. 115, 204108 (2014)CrossRefGoogle Scholar
  20. 20.
    Dayou, J., Kim, J., Im, J., Zhai, L., How, A.T.C., Liew, W.Y.H.: The effects of width reduction on the damping of a cantilever beam and its application in increasing the harvesting power of piezoelectric energy harvester. Smart Mater. Struct. 24, 45006 (2015)CrossRefGoogle Scholar
  21. 21.
    Palosaari, J., Leinonen, M., Juuti, J., Jantunen, H.: The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever. Mech. Syst. Signal Process. 106, 114 (2018)CrossRefGoogle Scholar
  22. 22.
    Qing-Ming, W., Xiao-Hong, D., Baomin, X., Cross, L.E.: Electromechanical coupling and output efficiency of piezoelectric bending actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 638 (1999)CrossRefGoogle Scholar
  23. 23.
    Patil, D.R., Zhou, Y., Kang, J.-E., Sharpes, N., Jeong, D.-Y., Kim, Y.-D., Kim, K.H., Priya, S., Ryu, J.: Anisotropic self-biased dual-phase low frequency magneto-mechano-electric energy harvesters with giant power densities. APL Mater. 2, 046102 (2014)CrossRefGoogle Scholar
  24. 24.
    Geon-Tae, H., Joonseok, Y., Ho, Y.S., Ho-Yong, L., Minbok, L., Yong, P.D., Hyun, H.J., Jun, L.S., Kyu, J.C., Jaeha, K., Kwi-Il, P., Jae, L.K.: A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN–PZT. Adv. Mater. 5, 1500051 (2015)Google Scholar
  25. 25.
    Hong, Y., Sui, L., Zhang, M., Shi, G.: Theoretical analysis and experimental study of the effect of the neutral plane of a composite piezoelectric cantilever. Energy Convers. Manag. 171, 1020 (2018)CrossRefGoogle Scholar
  26. 26.
    Morimoto, K., Kanno, I., Wasa, K., Kotera, H.: High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sens. Actuators A Phys. 163, 428 (2010)CrossRefGoogle Scholar
  27. 27.
    Durou, H., Ardila-Rodriguez, G.A., Ramond, A., Dollat, X., Rossi, C., Esteve, D.: Micromachined bulk pzt piezoelectric vibration harvester to improve effectiveness over low amplitude and low frequency vibrations. In: Proceedings of Power MEMS, p. 27 (2010)Google Scholar
  28. 28.
    Kanno, I., Ichida, T., Adachi, K., Kotera, H., Shibata, K., Mishima, T.: Power generation performance of lead-free (K, Na)NbO3 piezoelectric thin-film energy harvesters. Sens. Actuators A Phys. 179, 132 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials of Science and EngineeringPusan National UniversityBusanKorea
  2. 2.Functional Ceramics Research GroupKorea Institute of Materials Science (KIMS)ChangwonKorea
  3. 3.Department of Robotics EngineeringDGISTDaeguKorea
  4. 4.School of Materials Science and EngineeringYeungnam UniversityGyeongsanKorea

Personalised recommendations