Advertisement

Electronic Materials Letters

, Volume 15, Issue 2, pp 208–215 | Cite as

Phosphorus Doping of Si Nanosheets by Spin-on Dopant Proximity

  • Jeen Moon Yang
  • Jaejun Lee
  • Tae-Eon Park
  • Dongjea Seo
  • Jeong Min Park
  • Sangwon Park
  • Jukwan Na
  • Juyoung Kwon
  • Hyo-Jung Lee
  • Jaehyun Ryu
  • Heon-Jin ChoiEmail author
Original Article – Nanomaterials
  • 69 Downloads

Abstract

Low-dimensional silicon (Si) nanostructures have been attracting a significant attention for various applications including electrical, optical, energy devices, and bio-chemical sensors. Two-dimensional Si nanostructures, i.e., Si nanosheets (SiNSs), are promising owing to their extremely large surface area, mechanical flexibility, and band gap modulation. In order to exploit the potentials of SiNSs, the doping of these nanostructures is crucial; however, this has not been yet extensively investigated. In this paper, we report an n-type phosphorus doping of SiNSs using a spin-on dopant proximity technique that was employed to deposit a thin film of phosphosilicate glass by evaporation. Structural and X-ray measurements results reveal that the phosphorus atoms are substitutionally doped and that the crystallinity and structure of the SiNSs are preserved after the doping. Electrical measurements show that the SiNSs are heavily n-type doped. The doping level can be modulated by adjusting the annealing temperature.

Graphical Abstract

Keywords

Silicon nanosheets Diffusion limited aggregation Phosphorus doping Spin on dopant 

Notes

Acknowledgements

This research was supported by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014M3A7B4051594) and the Korea government (MSIP) (No. 2017R1A2B3011586).

References

  1. 1.
    Peercy, P.S.: The drive to miniaturization. Nature 406, 1023–1026 (2000)CrossRefGoogle Scholar
  2. 2.
    Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)CrossRefGoogle Scholar
  3. 3.
    Hu, J.T., Odom, T.W., Lieber, C.M.: Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999)CrossRefGoogle Scholar
  4. 4.
    Namdari, P., Daraee, H., Eatemadi, A.: Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Res. Lett. 11, 404 (2016)CrossRefGoogle Scholar
  5. 5.
    Chan, C.K., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)CrossRefGoogle Scholar
  6. 6.
    Tsakalakos, L., et al.: Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007)CrossRefGoogle Scholar
  7. 7.
    Zwanenburg, F.A., et al.: Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013)CrossRefGoogle Scholar
  8. 8.
    Dhenadhayalan, N., et al.: Silicon quantum dot-based fluorescence turn-on metal ion sensors in live cells. Acs Appl. Mater. Inter. 8, 23953–23962 (2016)CrossRefGoogle Scholar
  9. 9.
    Wei, Y., et al.: Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes. Mater. Res. Bull. 48, 4072–4077 (2013)CrossRefGoogle Scholar
  10. 10.
    Ghosh, B. Shirahata, N.: Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci. Technol. Adv. Mater. 15, 014207 (2014)CrossRefGoogle Scholar
  11. 11.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  12. 12.
    Watanabe, K., Taniguchi, T., Kanda, H.: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004)CrossRefGoogle Scholar
  13. 13.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)CrossRefGoogle Scholar
  14. 14.
    Akinwande, D., Petrone, N., Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014)CrossRefGoogle Scholar
  15. 15.
    Choi, S., Kim, I.: Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14, 221–260 (2018)CrossRefGoogle Scholar
  16. 16.
    Liu, C., Bai, Y., Zhou, J., Zhao, Q., Qiao, L.: A review of graphene plasmons and its combination with metasurface. J. Korean Ceram. Soc. 54, 349–365 (2017)CrossRefGoogle Scholar
  17. 17.
    Atabaki, M.M., Kovacevic, R.: Graphene composites as anode materials in lithium-ion batteries. Electron. Mater. Lett. 9, 133–153 (2013)CrossRefGoogle Scholar
  18. 18.
    Okamoto, H., et al.: Silicon nanosheets and their self-assembled regular stacking structure. J. Am. Chem. Soc. 132, 2710–2718 (2010)CrossRefGoogle Scholar
  19. 19.
    Ryu, J., Hong, D., Choi, S., Park, S.: Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 10, 2843–2851 (2016)CrossRefGoogle Scholar
  20. 20.
    Tao, L., et al.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015)CrossRefGoogle Scholar
  21. 21.
    Kim, S.W., et al.: Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions. ACS Nano 8, 6556–6562 (2014)CrossRefGoogle Scholar
  22. 22.
    Kim, J., Hong, K.H.: Retarded dopant diffusion by moderated dopant–dopant interactions in Si nanowires. Phys. Chem. Chem. Phys. 17, 1575–1579 (2015)CrossRefGoogle Scholar
  23. 23.
    Ronning, C., Borschel, C., Geburt, S., Niepelt, R.: Ion beam doping of semiconductor nanowires. Mater. Sci. Eng. R 70, 30–43 (2010)CrossRefGoogle Scholar
  24. 24.
    Ndoye, Coumba, Liu, Tong, Orlowski, Marius: Comparison of diffusion mechanisms in Si bulk, nanomembranes, and nanowires. ECS Trans. 33(31), 3–18 (2011)CrossRefGoogle Scholar
  25. 25.
    Fernandez-Serra, M.V., Adessi, C., Blase, X.: Surface segregation and backscattering in doped silicon nanowires. Phys. Rev. Lett. 96, 166805 (2006)CrossRefGoogle Scholar
  26. 26.
    Ingole, S., et al.: Ex situ doping of silicon nanowires with boron. J. Appl. Phys. 103, 104302 (2008)CrossRefGoogle Scholar
  27. 27.
    Zagozdzonwosik, W., Grabiec, P.B., Lux, G.: Silicon doping from phosphorus spin-on dopant sources in proximity rapid thermal-diffusion. J. Appl. Phys. 75, 337–344 (1994)CrossRefGoogle Scholar
  28. 28.
    Lee, J., Kim, S.W., Kim, I., Seo, D., Choi, H.J.: Growth of silicon nanosheets under diffusion-limited aggregation environments. Nanoscale Res. Lett. 10, 429 (2015)CrossRefGoogle Scholar
  29. 29.
    Song, C., et al.: High-conductive nanocrystalline silicon with phosphorous and boron doping. Appl. Surf. Sci. 257, 1337–1341 (2010)CrossRefGoogle Scholar
  30. 30.
    Shan, D., et al.: The change of electronic transport behaviors by P and B doping in nano-crystalline silicon films with very high conductivities. Nanomaterials—Basel 6, 233 (2016)CrossRefGoogle Scholar
  31. 31.
    Lu, P., et al.: Phosphorus doping in Si Nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication. Sci. Rep.—Uk 6, 22888 (2016)CrossRefGoogle Scholar
  32. 32.
    Thurber et al.: The Relationship Between Resistivity and Dopant Density for Phosphorus-and Boron-Doped Silicon, vol. 400–64, p. 42. National Bureau of Standards Special Publications (1981)Google Scholar
  33. 33.
    Cui, Y., Duan, X.F., Hu, J.T., Lieber, C.M.: Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213–5216 (2000)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringGlobal E3 Institute, Yonsei UniversitySeoulKorea
  2. 2.Center for SpintronicsPost-Si Semiconductor Institute, Korea Institute of Science and TechnologySeongbuk-guKorea

Personalised recommendations