Advertisement

Same value analysis on Edwards curves

  • Rodrigo AbarzúaEmail author
  • Santi Martínez
  • Valeria Mendoza
  • Nicolas Thériault
Regular Paper
  • 16 Downloads

Abstract

Recently, several research groups in cryptography have presented new elliptic curve models based on Edwards curves. These new curves were selected for their good performance and security perspectives. Cryptosystems based on elliptic curves in embedded devices can be vulnerable to side-channel attacks (SCA), such as simple power analysis (SPA) or differential power analysis. In this paper, we analyze the existence of special points—whose use in SCA is known as same value analysis (SVA)—in the case of Edwards elliptic curves. These special points can be identified through a power analysis of the scalar multiplication. We show that all Edwards curves recently proposed for standardization contain some of these points and are therefore unsafe against SVA. As a countermeasure, we use the isogeny volcano approach to find SVA-secure isogenous curves to those proposed for standardization.

Keywords

Elliptic curve cryptography Side-channel attack Same value analysis Edwards curves 

Notes

Supplementary material

References

  1. 1.
    Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem. In: Information Security—ISC 2003, LNCS, vol. 2851, pp. 218–233. Springer (2003)Google Scholar
  2. 2.
    Akishita, T., Takagi, T.: On the optimal parameter choice for elliptic curve cryptosystems using isogeny. In: Public Key Cryptography—PKC 2004, LNCS, vol. 2947, pp. 346–359. Springer (2004)Google Scholar
  3. 3.
    Aranha, D., Barreto, P., Pereira, G., Ricardini, J.: A note on high-security general-purpose elliptic curves. IARC Cryptology ePrint Archive, report 2013/647 (2013)Google Scholar
  4. 4.
    Avanzi, R.: Side channel attacks on implementations of curve-based cryptographic primites. IACR Cryptology ePrint Archive, report 2005/017 (2005)Google Scholar
  5. 5.
    Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision correlation attack on elliptic curves. In: SAC 2013, LNCS, vol. 8282, pp. 553–570. Springer (2014)Google Scholar
  6. 6.
    Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Public Key Cryptography—PKC 2006, LNCS, vol. 3958, pp. 207–228. Springer (2006)Google Scholar
  7. 7.
    Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Progress in Cryptology—AFRICACRYPT 2008, LNCS, vol. 5023, pp. 389–405. Springer (2008)Google Scholar
  8. 8.
    Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indistinguishable from uniform random strings. IACR Cryptology ePrint Archive, report 2013/325 (2013)Google Scholar
  9. 9.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Advances in Cryptology—ASIACRYPT 2007, LNCS, vol. 4833, pp. 29–50. Springer (2007)Google Scholar
  10. 10.
    Bernstein, D.J., Lange, T.: Explicit formula database. http://www.hyperelliptic.org/EFD/
  11. 11.
    Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryptography. http://safecurves.cr.yp.to/
  12. 12.
    Bogdanov, A.: Improved side-channel collision attacks on AES. In: SAC 2007, LNCS, vol. 4876, pp. 84–95. Springer (2007)Google Scholar
  13. 13.
    Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In: CHES 2008, LNCS, vol. 5154, pp. 30–44. Springer (2008)Google Scholar
  14. 14.
    Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryptography: an efficiency and security analysis. J. Cryptogr. Eng. 6(4), 259–286 (2016)CrossRefGoogle Scholar
  15. 15.
    Chari, S., Rao, J.R., Rohati, P.: Template attacks. In: Cryptographic Hardware and Embedded Systems—CHES 2002, LNCS, vol. 2523, pp. 13–28. Springer (2003)Google Scholar
  16. 16.
    Chevallier-Mames, B.: Self-randomized exponentiation algorithms. In: Topics in Cryptology—CT-RSA 2004, LNCS, vol. 2964, pp. 236–249. Springer (2004)Google Scholar
  17. 17.
    Chmielewski, L., Costa Massolino, P.M., Vliegen, J., Batina, L., Mentens, N.: Completing the complete ECC formulae with countermeasures. J. Low Power Electron. Appl. 7(1), 3 (2017)CrossRefGoogle Scholar
  18. 18.
    Ciet, M., Joye, M.: (Virtually) free randomization techniques for elliptic curve cryptography. In: Information and Communications Security—ICICS 2003, LNCS, vol. 2836, pp. 348–359. Springer (2003)Google Scholar
  19. 19.
    Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-correlation power analysis on first order protected AES. In: Cryptographic Hardware and Embedded Systems—CHES 2011, LNCS, vol. 6917, pp. 49–62. Springer (2011)Google Scholar
  20. 20.
    Clavier, C., Joye, M.: Universal exponentiation algorithm. In: Cryptographic Hardware and Embedded Systems—CHES 2001, LNCS, vol. 2162, pp. 300–308. Springer (2001)Google Scholar
  21. 21.
    Coron, J.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Cryptographic Hardware and Embedded Systems—CHES 1999, LNCS, vol. 1717, pp. 392–302. Springer (1999)Google Scholar
  22. 22.
    Danger, J.-L., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: Improving the Big Mac attack on elliptic curve cryptography. In: The New Codebreakers, LNCS, vol. 9100, pp. 374–386. Springer (2016)Google Scholar
  23. 23.
    Ebeid, N.M.: Key randomization countermeasures to power analysis attacks on elliptic curve cryptosystems. Ph.D. thesis in Electrical and Computer Engineering, University of Waterloo (2007)Google Scholar
  24. 24.
    Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc. New Ser. 44(3), 393–422 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Feix, B., Verneuil, V.: There’s something about m-ary, protected against physical attacks. In: Progress in Cryptology—INDOCRYPT 2013, LNCS, vol. 8250, pp. 197–214. Springer (2013)Google Scholar
  26. 26.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electronic analysis: concrete results. In: Cryptographic Hardware and Embedded Systems—CHES 2001, LNCS, vol. 2162, pp. 251–261. Springer (2001)Google Scholar
  27. 27.
    Giry, D., Quinsquater, J.-J.: Bluekrypt cryptographic key length. Recommendation 2011, v26.0, April 18. http://www.keylength.com/ (2011)
  28. 28.
    Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In: Public Key Cryptography—PKC 2003, LNCS, vol. 2567, pp. 199–210. Springer (2003)Google Scholar
  29. 29.
    Hamburg, M.: Ed448-goldilocks, fast, strong elliptic curve cryptography. http://ed448goldilocks.sourceforge.net/
  30. 30.
    Josefson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA). Internet Research Task Force memo. https://tools.ietf.org/html/rfc8032 (2017)
  31. 31.
    Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Cryptographic Hardware and Embedded Systems—CHES 2007, LNCS, vol. 4727, pp. 135–147. Springer (2007)Google Scholar
  32. 32.
    Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve cryptography. In: Cryptographic Hardware and Embedded Systems—CHES 2001, LNCS, vol. 2162, pp. 377–390. Springer (2001)Google Scholar
  33. 33.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kocher, P.: Timing attacks on implementation of Diffie-Hellman RSA, DSS and other systems. In: Advances in Cryptology—CRYPTO 1996, LNCS, vol. 1109, pp. 104–113. Springer (1996)Google Scholar
  35. 35.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology—CRYPTO 1999, LNCS, vol. 1666, pp. 388–397. Springer (1999)Google Scholar
  36. 36.
    Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. Internet Research Task Force memo. https://tools.ietf.org/html/rfc7748 (2016)
  37. 37.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Berlin (2010)zbMATHGoogle Scholar
  38. 38.
    Martínes, S., Sadornil, D., Tena, J., Tomàs, R., Valls, M.: On Edwards curves and ZVP-attacks. Appl. Algebra Eng. Commun. Comput. 24, 507–517 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Advances in Cryptology—CRYPTO 1985, LNCS, vol. 218, pp. 417–426. Springer (1986)Google Scholar
  40. 40.
    Miret, J., Sadornil, D., Tena, J., Tomàs, R., Valls, M.: Isogeny cordillera algorithm to obtain cryptographically good elliptic curves. In: Australasian Information Security Workshop: Privacy Enhancing Technologies (AISW), vol. 68, pp. 127–131 (2007)Google Scholar
  41. 41.
    Möller, B.: Securing elliptic curve point multiplication against side-channel attacks. In: Information Security—ISC 2001, LNCS, vol. 2200, pp. 324–334. Springer (2001)Google Scholar
  42. 42.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: CHES 2010, LNCS, vol. 6225, pp. 125–139. Springer (2010)Google Scholar
  43. 43.
    Murdica, C., Guilley, S., Danger, J.-L., Hoogvourst, P., Naccache, D.: Same value power analysis using special point on elliptic curves. In: Constructive Side-Channel Analysis and Secure Design—COSADE 2012, LNCS, vol. 7275, pp. 183–198. Springer (2012)Google Scholar
  44. 44.
    Naccache, D., Smart, N.P., Stern, J.: Projective coordinates leak. In: Advances in Cryptology—EUROCRYPT 2004, LNCS, vol. 3027, pp. 257–267. Springer (2004)Google Scholar
  45. 45.
    Nascimento, E., Chmielewski, L., Oswald, D., Schwabe, P.: Attacking embedded ECC implementations through CMOV side channels. IARC Cryptology ePrint Archive, report 2016/923 (2016)Google Scholar
  46. 46.
    Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and countermeasures for smard cards. In: Smart Card Programming and Security—E-SMART 2001, LNCS, vol. 2140, pp. 200–210. Springer (2001)Google Scholar
  47. 47.
    Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES: combining side channel- and differential-attack. In: CHES 2004, LNCS, vol. 3156, pp. 163–175. Springer (2004)Google Scholar
  48. 48.
    Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its application to DES. In: Fast Software Encryption—FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer (2003)Google Scholar
  49. 49.
    Smart, N.: An analysis of Goubin’s refined power analysis attack. In: Cryptographic Hardware and Embedded Systems— CHES 2003, LNCS, vol. 2779, pp. 281–290. Springer (2003)Google Scholar
  50. 50.
    Smart, N.P., Oswald, E., Page, D.: Randomised representations. IET Inf. Secur. 2(2), 19–27 (2008)CrossRefGoogle Scholar
  51. 51.
    Standards for efficient cryptography, SEC 2: Recommended Elliptic Curve Domain Parameters. Certicom Corp. Version 2.0, January 2010Google Scholar
  52. 52.
    Strauss, E.G.: Addition chains of vectors (problem 5125). Am. Math. Mon. 70, 806–808 (1964)Google Scholar
  53. 53.
    Thériault, N.: SPA resistant left-to-right integer recoding. In: Selected Areas in Cryptography—SAC 2005, LNCS, vol. 3897, pp. 345–358. Springer (2005)Google Scholar
  54. 54.
    Trichina, E., Belleza, A.: Implementation of elliptic curve cryptography with built-in counter measures against side channel attacks. In: Cryptographic Hardware and Embedded Systems—CHES 2002, LNCS, vol. 2523, pp. 98–113. Springer (2002)Google Scholar
  55. 55.
    Tunstall, M., Joye, M.: Coordinate blinding over large prime fields. In: Cryptographic Hardware and Embedded Systems—CHES 2010, LNCS, vol. 6225, pp. 443–445. Springer (2010)Google Scholar
  56. 56.
    Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-always and message blinding countermeasures. In: CT-RSA 2011, LNCS, vol. 6558, pp. 77–88. Springer (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemática y Ciencia de la ComputaciónUniversidad de Santiago de ChileSantiagoChile
  2. 2.Departament de MatemáticaUniversitat de LleidaLleidaSpain

Personalised recommendations