Advertisement

Journal of Cryptographic Engineering

, Volume 8, Issue 4, pp 271–283 | Cite as

A class of safe and efficient binary Edwards curves

  • Luckas A. Farias
  • Bruno C. Albertini
  • Paulo S. L. M. Barreto
Regular Paper

Abstract

This work describes a family of binary Edwards curves that admit modular reductions (an operation that can be responsible for up to 30% of the processing time in point arithmetic) twice as fast than the best usual settings, while essentially being as secure as a binary elliptic curve can be (in terms of being rigid and twist safe). Moreover, we present a hardware architecture with a generic VHDL description that can be synthesized to any FPGA with enough area to support the circuit. For this architecture, we are able to execute a point multiplication by scalar on \(\mathbb {F}_{562}\) in 2.28 ms on Cyclone IV GX, in 1.23 ms on Virtex-7 and in 1.01 ms on Zynq 7020.

Keywords

Elliptic curve cryptosystems Binary Edwards curves Efficient arithmetic Hardware implementation Side-channel protection 

Supplementary material

References

  1. 1.
    Adapteva. Parallella board. www.parallella.orgboard (2015)
  2. 2.
    Altera. Quartus II web edition (2018). http://dl.altera.com/?edition=lite
  3. 3.
    Azarderakhsh, R., Reyhani-Masoleh, A.: Efficient FPGA implementations of point multiplication on binary edwards and generalized hessian curves using gaussian normal basis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(8), 1453–1466 (2012)CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J., Lange, T.: Faster Addition and Doubling on Elliptic Curves, pp. 29–50. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  5. 5.
    Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary Edwards curves. In: Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems-CHES 2008. Lecture Notes in Computer Science, vol. 8, pp. 244–265. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Chatterjee, A., Sengupta, I.: FPGA implementation of binary Edwards curve using ternary representation. In: Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI, pp. 73–78. ACM (2011)Google Scholar
  7. 7.
    Chatterjee, A., Sengupta, I.: Performance modelling and acceleration of binary Edwards curve processor on FPGAs. Int. J. Electron. Inf. Eng. 2(2), 80–93 (2015)Google Scholar
  8. 8.
    Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44, 393–422 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Farias, L.A., Albertini, B.C., Barreto, P.S.L.M: Parallelism level analysis of binary field multiplication on FPGAs. In: 2015 Brazilian Symposium on Computing Systems Engineering (SBESC), pp. 64–69 (2015)Google Scholar
  10. 10.
    Farias, L.A., Albertini, B.C., Barreto, P.S.L.M: Cryptographic architecture for co-process on consumer electronics devices. In: 2016 IEEE International Symposium on Consumer Electronics (ISCE), pp. 3–4 (2016)Google Scholar
  11. 11.
    Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil descent attack. Cryptology ePrint Archive, Report 2001/054, 2001. http://eprint.iacr.org/2001/054
  12. 12.
    Gövem, B., Järvinen, K., Aerts, K., Verbauwhede, I., Mentens, N.: A fast and compact FPGA implementation of elliptic curve cryptography using lambda coordinates, pp. 63–83. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  13. 13.
    Intel and Terasic. De2i-150 board. www.terasic.com.twen (2015)
  14. 14.
    Itoh, T., Tsujii, S.: Structure of parallel multipliers for a class of fields GF (2m). Inf. Comput. 83(1), 21–40 (1989)CrossRefGoogle Scholar
  15. 15.
    Jacobson, M.J., Menezes, A., Stein, A.: Solving elliptic curve discrete logarithm problems using Weil descent. Cryptology ePrint Archive, Report 2001/041, 2001. http://eprint.iacr.org/2001/041
  16. 16.
    Kim, K.H., Lee, C.O., Negre, C.: Binary Edwards curves revisited, pp. 393–408. Springer International Publishing, Cham (2014)Google Scholar
  17. 17.
    Lai, J.-Y., Huang, C.-T.: A highly efficient cipher processor for dual-field elliptic curve cryptography. IEEE Trans. Circuit Syst. II Express Briefs 56(5), 394–398 (2009)CrossRefGoogle Scholar
  18. 18.
    Loi, K.C., An, S., Ko, S.-B.: FPGA implementation of low latency scalable elliptic curve cryptosystem processor in GF (2m). In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 822–825 (2014)Google Scholar
  19. 19.
    Loi, K.C.C., Ko, S.B.: High performance scalable elliptic curve cryptosystem processor for Koblitz curves. Microprocess. Microsyst. 37(4–5), 394–406 (2013)CrossRefGoogle Scholar
  20. 20.
    Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization. Math. Comput. 48, 243–264 (1987)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rashidi, B., Farashahi, R.R., Sayedi, S.M.: High-speed hardware implementations of point multiplication for binary Edwards and generalized Hessian curves. IACR Cryptol. ePrint Arch. 2017, 5 (2017)Google Scholar
  22. 22.
    Rivera J., Meulen R.D.: V. Weil descent page. www.cs.bris.ac.uk/~nigel/weil_descent.html (2017)
  23. 23.

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Escola PolitécnicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations