A bivariate conditional Weibull distribution with application

  • I. E. GongsinEmail author
  • F. W. O. Saporu


A three-parameter bivariate distribution is derived from the marginal and conditional Weibull distributions. Its joint properties are derived and method of estimation of its parameters discussed. It is generalised for the multivariate case when the assumptions of piecewise conditional independence of the variables is tenable. It is applied to a bivariate data set of wind speed and solar radiation, where the conditional dependence of the two variables involved is suspected. The result shows that the model is compatible with the data. It is proposed for application when there is need to allow for such conditional structure in a bivariate model.


Bivariate conditional Weibull distribution Newton–Raphson method Joint moments Hessian matrix 

Mathematics Subject Classification




  1. 1.
    Balakrishnan, N., Lai, C.D.: Continuous Bivariate Distributions, 2nd edn. Springer, New York (2009)zbMATHGoogle Scholar
  2. 2.
    Burrows, R., Salih, B.A.: Statistical modelling of long-term wave climate. In: Edge, I. (ed.) Twentieth Coastal Engineering Conference Proceedings, vol. 1 B, pp. 42–56. American Society of Civil Engineers, New York (1987)Google Scholar
  3. 3.
    Constantinides, A.: Applied Numerical Methods and Applied Computers. McGraw-Hill, New York (1987)zbMATHGoogle Scholar
  4. 4.
    Dubey, S.D.: Compound gamma, beta and F distributions. Metrika 16, 27–31 (1970)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Genton, M.G.: Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. Edited Volume, p. 416. Chapman & Hall/CRC, Boca Raton (2004)CrossRefGoogle Scholar
  6. 6.
    Gongsin, I.E., Saporu, F.W.O.: On the estimation of parameters in a Weibull wind model and its application to wind speed data from Maiduguri, Borno State Nigeria. Math. Model. Theory 6(7), 62–76 (2016)Google Scholar
  7. 7.
    Gongsin, I.E., Saporu, F.W.O.: Solar energy potential in Yola, Adamawa State, Nigeria. Int. J. Renew. Energy Sources 4, 48–55 (2019). (ISSN: 2367-9123) Google Scholar
  8. 8.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1, 2nd edn. Wiley, New York (1994)zbMATHGoogle Scholar
  9. 9.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2, 2nd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  10. 10.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Multivariate Distributions, vol. 1, 2nd edn. Wiley, New York (2000)zbMATHGoogle Scholar
  11. 11.
    Kaminsky, F.C., Kirchoff, R.H.: Bivariate probability models for the description of average wind speeds at two heights. Sol. Energy 40, 49–56 (1988)CrossRefGoogle Scholar
  12. 12.
    Krogstad, H.E.: Height and period predictions of extreme waves. Appl. Ocean Res. 7, 158–165 (1985)CrossRefGoogle Scholar
  13. 13.
    Lee, C.K., Wen, M.J. A multivariate Weibull distribution. Accessed 13 Feb 2019
  14. 14.
    Mihram, G.A., Hultquist, A.R.: A bivariate warning-time/failure-time distribution. J. Am. Stat. Assoc. 62, 589–599 (1967)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Myrhaug, D., Kjeldsen, S.F.: Parametric modelling of joint probability distributions for steepness and asymmetry in deep water waves. Appl. Ocean Res. 6, 207–220 (1984)CrossRefGoogle Scholar
  16. 16.
    Ododo, J.C. (1994). New models for prediction of solar radiation in Nigeria. Paper Presented at the 2nd OAU/STRC Conference on New Renewable Energies at Bamako, Mali, May, 16–20Google Scholar
  17. 17.
    Proma, A.K., Pobitra, K.H., Sabbir, R.: Wind energy potential estimation for different regions of Bangladesh. Int. J. Renew. Sustain. Energy 3(3), 47–52 (2014)CrossRefGoogle Scholar
  18. 18.
    Sarabia, M.J., Emilio, G.D.: Construction of multivariate distributions: a review of some recent results. SORT 32(1), 3–36 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sens, S., Lamichhane, R., Diawara, N.: A bivariate distribution with conditional gamma and its multivariate form. J. Mod. Appl. Stat. Methods 13(2), 169–184 (2014). (article 9) CrossRefGoogle Scholar
  20. 20.
    Vaidyanathan, V.S., Sharon, V.A.: Morgenstern type bivariate Lindley distribution. Stat. Opt. Inf. Comput. 4, 132–146 (2016). MathSciNetCrossRefGoogle Scholar
  21. 21.
    Villanueva, D., Feijoo, A., Pazos, J.L.: Multivariate Weibull distribution for wind speed and wind power behavior assessment. Resources 2, 370–384 (2013). CrossRefGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of MaiduguriMaiduguriNigeria
  2. 2.National Mathematical CentreAbujaNigeria

Personalised recommendations