Convergence analysis of the Picard–Ishikawa hybrid iterative process with applications

  • Godwin Amechi OkekeEmail author


The purpose of this paper is to introduce the Picard–Ishikawa hybrid iterative process. This new iterative process can be seen as a hybrid of Picard and Ishikawa iterative processes. It is our purpose in this paper to show that this new hybrid iterative process converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, Noor, Picard–Mann and Picard–Krasnoselskii iterative processes in the sense of Berinde (Iterative Approximation of Fixed Points. Efemeride, Baia Mare, 2002). We establish data dependence and stability results for our newly developed iterative process. Moreover, we apply our newly developed iterative process in finding the solution of delay differential equations.


Picard–Ishikawa hybrid iterative process Rate of convergence Data dependence Convergence analysis Delay differential equations Stability of iterative processes 

Mathematics Subject Classification

47H09 47H10 49M05 54H25 



  1. 1.
    Abbas, M., Nazir, T.: A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 66(2), 223–234 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Agarwal, R.P., O’Regan, D., Sahu, D.R.: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 8(1), 61–79 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Akewe, H., Okeke, G.A., Olayiwola, A.F.: Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators. Fixed Point Theory Appl. 2014, 45 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akewe, H., Okeke, G.A.: Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators. Fixed Point Theory Appl. 2015, 66 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Babu, G.V.R., Vara Prasad, K.N.V.: Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators. Fixed Point Theory Appl. 2006, 6 (2006) (Article ID 49615) Google Scholar
  6. 6.
    Berinde, V.: Iterative Approximation of Fixed Points. Efemeride, Baia Mare (2002)zbMATHGoogle Scholar
  7. 7.
    Berinde, V.: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl. 2004, 716359 (2004)Google Scholar
  8. 8.
    Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi contractive operators. Acta Math. Univ. Comen. 73(1), 119–126 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Berinde, V., Berinde, M.: The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings. Carpath. J. Math. 21(1–2), 13–20 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)zbMATHGoogle Scholar
  11. 11.
    Campbell, S.A., Edwards, R., van den Driessche, P.: Delayed coupling between two neural network loops. SIAM J. Appl. Math. 65(1), 316–335 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200, 1–27 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Coman, G.H., Pavel, G., Rus, I., Rus, I.A.: Introduction in the theory of operational equation, Ed. Dacia, Cluj-Napoca (1976)Google Scholar
  14. 14.
    Cooke, K., Kuang, Y., Li, B.: Analyses of an antiviral immune response model with time delays. Can. Appl. Math. Q. 6(4), 321–354 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cooke, K.L., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dogan, K., Karakaya, V.: On the convergence and stability results for a new general iterative process. Sci. World J. 2014, 852475-1–852475-9 (2014)CrossRefGoogle Scholar
  17. 17.
    Forde, J.E.: Delay differential equation models in mathematical biology, Ph.D. Dissertation, University of Michigan (2005)Google Scholar
  18. 18.
    Gürsoy, F., Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarded argument (2014). arXiv:1403.2546v2 [math.FA] (28 Apr 2014)
  19. 19.
    Hämmerlin, G., Hoffmann, K.H.: Numerical Mathematics. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  20. 20.
    Harder, A.M.: Fixed point theory and stability results for fixed point iteration procedures, Ph.D. Thesis, University of Missouri-Rolla (1987)Google Scholar
  21. 21.
    Harder, A.M., Hicks, T.L.: A stable iteration procedure for nonexpansive mappings. Math. Jpn. 33, 687–692 (1988)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Harder, A.M., Hicks, T.L.: Stability results for fixed point iteration procedures. Math. Jpn. 33, 693–706 (1988)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147–150 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Khan, S.H.: A Picard–Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 69 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Krasnosel’skii, M.A.: Two observations about the method of successive approximations. Usp. Mat. Nauk. 10, 123–127 (1955)Google Scholar
  26. 26.
    Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251(1), 217–229 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Okeke, G.A., Abbas, M.: Convergence and almost sure \(T\)-stability for a random iterative sequence generated by a generalized random operator. J. Inequal. Appl. 2015, 146 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Okeke, G.A., Kim, J.K.: Convergence and summable almost \(T\)-stability of the random Picard–Mann hybrid iterative process. J. Inequal. Appl. 2015, 290 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Okeke, G.A., Kim, J.K.: Convergence and \((S,T)\)-stability almost surely for random Jungck-type iteration processes with applications. Cogent Math. 3, 1258768 (2016). 15ppMathSciNetCrossRefGoogle Scholar
  32. 32.
    Okeke, G.A., Abbas, M.: A solution of delay differential equations via Picard–Krasnoselskii hybrid iterative process. Arab. J. Math. 6, 21–29 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Osilike, M.O.: Stability of the Mann and Ishikawa iteration procedures for \(\phi \)-strongly pseudocontractions and nonlinear equations of the \(\phi \)-strongly accretive type. J. Math. Anal. Appl. 227, 319–334 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Picard, E.: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 6, 145–210 (1890)zbMATHGoogle Scholar
  35. 35.
    Rashwan, R.A., Hammad, H.A., Okeke, G.A.: Convergence and almost sure \((S, T)\)-stability for random iterative schemes. Int. J. Adv. Math. 1, 1–16 (2016)Google Scholar
  36. 36.
    Rhoades, B.E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56(3), 741–750 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rhoades, B.E., Xue, Z.: Comparison of the rate of convergence among Picard, Mann, Ishikawa, and Noor iterations applied to quasicontractive maps. Fixed Point Theory Appl. 2010, 12 (2010) (Article ID 169062) Google Scholar
  38. 38.
    Singh, S.L., Bhatnagar, C., Mishra, S.N.: Stability of Jungck-type iterative procedures. Int. J. Math. Math. Sci. 19, 3035–3043 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Smolen, P., Baxter, D., Byrne, J.: A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator. Biophys. J. 83, 2349–2359 (2002)CrossRefGoogle Scholar
  40. 40.
    Soltuz, S.M., Otrocol, D.: Classical results via Mann-Ishikawa iteration. Rev. d’Analyse Numer. de l’Approximation 36(2), 193–197 (2007)Google Scholar
  41. 41.
    Soltuz, S.M., Grosan, T.: Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory Appl. 2008(1–7), 242916 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Turchin, P.: Rarity of density dependence or population regulation with lags. Nature 344, 660–663 (1990)CrossRefGoogle Scholar
  43. 43.
    Turchin, P., Taylor, A.D.: Complex dynamics in ecological time series. Ecology 73, 289–305 (1992)CrossRefGoogle Scholar
  44. 44.
    Vielle, B., Chauvet, G.: Delay equation analysis of human respiratory stability. Math. Biosci. 152(2), 105–122 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Weng, X.: Fixed point iteration for local strictly pseudocontractive mapping. Proc. Am. Math. Soc. 113, 727–731 (1991)CrossRefzbMATHGoogle Scholar
  47. 47.
    Xue, Z.: The comparison of the convergence speed between Picard, Mann, Krasnoselskij and Ishikawa iterations in Banach spaces. Fixed Point Theory Appl. 2008, 5 (2008) (Article ID 387056) Google Scholar
  48. 48.
    Zhao, T.: Global periodic solutions for a differential delay system modeling a microbial population in the chemostat. J. Math. Anal. Appl. 193, 329–352 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, School of Physical SciencesFederal University of TechnologyOwerriNigeria

Personalised recommendations