Advertisement

Afrika Matematika

, Volume 30, Issue 1–2, pp 279–290 | Cite as

Specht polynomials and modules over the Weyl algebra

  • Ibrahim NonkanéEmail author
Article
  • 13 Downloads

Abstract

In this paper we study the decomposition structure of a direct image of a polynomial ring under certain map.

Keywords

Algebraic geometry D-modules Direct image Representation theory Specht Polynomials Symmetric groups 

Mathematics Subject Classification

13N10 20C30 

Notes

Acknowledgements

This article is based on part of the author’s Ph.D. Dissertation written under the supervision of Prof. Rikard Bøgvad. I deeply thankful to R. Källstrom and Prof R. Bøgvad for instructive comments during the writing of this paper. This paper is financially supported by the International Science Program (ISP).

References

  1. 1.
    Abebaw, T., Bøgvad, R.: Decomposition of D-modules over a hyperplane arrangement in the plane. Ark. Mat. 48(2), 211–229 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allen, E.: A conjecture of Procesi and a new basis for the decomposition of the graded left regular representation of \(S_n\). Adv Math. 1100(2), 262–292 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ariki, S., Terasoma, T., Yamada, H.: Higher Specht polynomials. Hiroshima Math. 27(1), 177–188 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bergeron, F.: Algebraic combinatorics and coinvariant spaces, CMS Treatises in Mathematics. Canadian Mathematical Society, Ottawa (2009) (A K Peters Ltd., Wellesley )Google Scholar
  5. 5.
    Björk, J.-E.: Rings of Differential Operators. North-Holland Publishing Co., Amsterdam (1979)Google Scholar
  6. 6.
    Björk, J.-E.: Analytic \(D\)-modules and Applications, vol. 247. Kluwer Academic Publishers Group, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    de Cataldo, M.A.A., Migliorini, L.: The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Am. Math. Soc. (N.S.) 46(4), 535–633 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Coutinho, S.C.: A Primer of Algebraic \(D\)-Modules, vol. 33. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fulton, W., Harris, J.: Representation Theory. A First Course, Graduate Texts in Mathematics. Readings in Mathematics, vol. 129. Springer, New York (1991)Google Scholar
  10. 10.
    Garsia, A., Procesi, C.: On certain graded \(S_n\)-modules and the \(q\)-Kostka polynomials. Adv. Math. 94(1), 82–138 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology, vol. 101. Cambridge Studies in Advanced Mathematics, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hartshorne, R.: Residues and Duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer, Berlin, New York (1966)Google Scholar
  13. 13.
    Hotta, R., Takeuchi, K., Tanisaki, T.: D-Modules, Perverse Sheaves, and Representation Theory. Progress in Mathematics, 236. Birkhuser Boston, Inc., Boston (2008)Google Scholar
  14. 14.
    Peel, M.H.: Specht modules and symmetric groups. J. Algebra 36(1), 88–97 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sagan, B.E.: The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. Graduate Texts in Mathematics, 203. Springer, New York (2001)Google Scholar
  16. 16.
    Serre, J.-P.: Linear Representations of finite Groups, Graduate Texts in Mathematics, vol. 42. Springer, New York, Heidelberg (1977)CrossRefGoogle Scholar
  17. 17.
    Terasoma, T., Yamada, H.: Higher Specht polynomials for the symmetric group. Proc. Jpn. Acad. Ser. A Math. Sci. 69, 41–44 (1993)Google Scholar
  18. 18.
    van der Put, M., Singer, M.S.: Galois Theory of Linear Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328. Springer, Berlin (2003)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Université Ouaga II, IUFICOuagadougouBurkina Faso

Personalised recommendations