Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis of g-C3N4/BiVO4 and Its Photocatalytic Performance for Hydrogen Production

  • 18 Accesses


In this study, ultrasonic hybridization was used to improve the photocatalytic efficiency and stability of the g-C3N4/BiVO4 photocatalyst, which was synthesized using Bi(NO3)3·5H2O and NaVO3 via the hydrothermal method to obtain BiVO4, and further modified by g-C3N4. Moreover, the obtained photocatalyst was studied using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller, ultraviolet–visible spectroscopy and electrochemical impedance spectroscopy. Subsequently, the photocatalytic performance for hydrogen production of the obtained photocatalyst was determined in a photocatalytic reactor under visible light, with methanol as the sacrificial agent and chloroplatinic acid as the promoter. The experimental results showed that the photocatalytic activity of BiVO4 considerably improved under visible light condition when its surface was modified with g-C3N4. When the amount of g-C3N4 was 5% of the amount of BiVO4, the hydrogen production rate was 53.25 μmol/h, which was 77.17 times higher than that of pure BiVO4. This improved performance can be attributed to the larger specific surface area, the better electron transfer efficiency and the electron–hole pair separation efficiency of g-C3N4/BiVO4. A possible mechanism model for the formation of g-C3N4/BiVO4 composite photocatalyst has also been proposed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Schalkwijk, W.V.: Nanostructured materials for advanced energy conversion and storage devices. J. Nat. Mater. 4(5), 366–377 (2005)

  2. 2.

    Kudo, A.; Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. J. Chem. Soc. Rev. 38(1), 253–278 (2009)

  3. 3.

    Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. J. Nat. Mater. 8(1), 76–80 (2009)

  4. 4.

    Chen, X.B.; Shen, S.H.; Guo, L.J.; Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. J. Chem. Rev. 110(11), 6503–6570 (2010)

  5. 5.

    Fujishima, A.; Zhang, X.T.; Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. J. Surf. Sci. Rep. 63(12), 515–582 (2008)

  6. 6.

    Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. J. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)

  7. 7.

    Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. J. Sci. 293(5528), 269–271 (2001)

  8. 8.

    Bach, U.; Lupo, D.; Comte, P.; Moser, J.E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. J. Nat. 395(6702), 583–585 (1998)

  9. 9.

    Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. J. Nat. 453(7195), 638–641 (2008)

  10. 10.

    Kim, T.W.; Choi, K.S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. J. Sci. 343(6174), 990–994 (2014)

  11. 11.

    Ng, Y.H.; Iwase, A.; Kudo, A.; Amal, R.: Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. 1(17), 2607–2612 (2010)

  12. 12.

    Yu, J.; Kudo, A.: Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. J. Adv. Funct. Mater. 16(16), 2163–2169 (2006)

  13. 13.

    Zhou, L.; Wang, W.Z.; Liu, S.W.; Zhang, L.S.; Xu, H.L.; Zhu, W.: A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A: Chem. 252(1–2), 120–124 (2006)

  14. 14.

    Yan, S.C.; Li, Z.S.; Zou, Z.G.: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. J. Langmuir. 25(17), 10397–10401 (2009)

  15. 15.

    Xiang, Q.J.; Yu, J.G.; Jaroniec, M.: Preparation and enhanced visible-light photocatalytic H-2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115(19), 7355–7363 (2011)

  16. 16.

    Cao, S.W.; Low, J.X.; Yu, J.G.; Jaroniec, M.: Polymeric photocatalysts based on graphitic carbon nitride. J. Adv. Mater. 27(13), 2150–2176 (2015)

  17. 17.

    Cheng, J.; Yan, X.L.; Mo, Q.H.; Liu, B.T.; Wang, J.; Yang, X.; Li, L.: Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance. J. Ceram Int. 43(1), 301–307 (2017)

  18. 18.

    Jiang, D.L.; Xiao, P.; Shao, L.Q.; Li, D.; Chen, M.: RGO-promoted all-solid-state g-C3N4/BiVO4 Z-scheme heterostructure with enhanced photocatalytic activity toward the degradation of antibiotics. J. Ind Eng Chem Res. 56(31), 8823–8832 (2017)

  19. 19.

    Wang, Y.; Sun, J.Y.; Li, J.; Zhao, X.: Electrospinning preparation of nanostructured g-C3N4/BiVO4 composite films with an enhanced photoelectrochemical performance. J. Langmuir. 33(19), 4694–4701 (2017)

  20. 20.

    Zhang, L.; Chen, D.; Jiao, X.L.: Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B. 110(6), 2668–2673 (2006)

  21. 21.

    Liang, Y.Q.; Tsubota, T.; Mooij, L.P.A.; Krol, R.V.D.: Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J. Phys. Chem. C 115(35), 17594–17598 (2011)

  22. 22.

    Bai, X.J.; Wang, L.; Zong, R.L.; Zhu, Y.F.: Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 117(19), 9952–9961 (2013)

  23. 23.

    Zhu, B.C.; Xia, P.F.; Ho, W.K.; Yu, J.G.: Isoelectric point and adsorption activity of porous g-C3N4. J. Appl. Surf. Sci. 344, 188–195 (2015)

  24. 24.

    Kong, H.J.; Won, D.H.; Kim, J.; Woo, S.I.: Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. J. Chem. Mater. 28(5), 1318–1324 (2016)

  25. 25.

    Ji, Y.X.; Cao, J.F.; Jiang, L.Q.; Zhang, Y.H.; Yi, Z.G.: G-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity. J. Alloys Compd. 590(25), 9–14 (2014)

  26. 26.

    Zhang, J.H.; Ren, F.Z.; Deng, M.S.; Wang, Y.X.: Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study. J. PCCP. 17(15), 10218–10226 (2015)

  27. 27.

    Zhan, S.; Zhou, F.; Huang, N.B.; He, Q.C.; Zhu, Y.F.: Deactivating harmful marine microorganisms through photoelectrocatalysis by GO/ZnWO4 electrodes. J. Chem. Eng. J. 330(15), 635–643 (2017)

  28. 28.

    Xiang, Q.J.; Yu, J.G.; Jaroniec, M.: Graphene-based semiconductor photocatalysts. J. Chem. Soc. Rev. 41(2), 782–796 (2012)

  29. 29.

    Liu, J.; Liu, Y.; Liu, N.Y.; Han, Y.Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.T.; Zhong, J.; Kang, Z.H.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. J. Sci. 347(6225), 970–974 (2015)

  30. 30.

    Hisatomi, T.; Kubota, J.; Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. J. Chem. Soc. Rev. 43(22), 7520–7535 (2014)

  31. 31.

    Yeh, T.F.; Syu, J.M.; Cheng, C.; Chang, T.H.; Teng, H.: Graphite oxide as a photocatalyst for hydrogen production from water. J. Adv. Funct. Mater. 20(14), 2255–2262 (2010)

  32. 32.

    Turner, J.A.: Sustainable hydrogen production. J. Sci. 305(5686), 972–974 (2004)

  33. 33.

    Kim, M.W.; Samuel, E.; Kim, K.; Yoon, H.; Joshi, B.; Swihart, M.T.; Yoon, S.S.: Tuning the morphology of electrosprayed BiVO4 from nanopillars to nanoferns via pH control for solar water splitting. J. Alloys Compd. 769, 193–200 (2018)

  34. 34.

    Cui, P.P.; Hu, Y.; Zheng, M.M.; Wei, C.H.: Enhancement of visible-light photocatalytic activities of BiVO4 coupled with g-C3N4 prepared using different precursors. J. Environ. Sci. Pollut. Res. 25, 32466–32477 (2018)

  35. 35.

    Wang, Y.; Tan, G.Q.; Liu, T.; Su, Y.N.; Ren, H.J.; Zhang, X.L.; Xia, A.; Lv, L.; Liu, Y.: Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction. J. Appl. Catal. B. 234, 37–49 (2018)

  36. 36.

    Safaei, J.; Ullah, H.; Mohamed, N.A.; Noh, M.F.M.; Soh, M.F.; Tahir, A.A.; Ludin, N.A.; Ibrahim, M.A.; Isahak, W.N.R.W.; Teridi, M.A.M.: Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. J. Appl. Catal. B. 234, 296–310 (2018)

  37. 37.

    Lamers, M.; Fiechter, S.; Friedrich, D.; Abdi, F.F.; Krol, R.; Mater, J.: Formation and suppression of defects during heat treatment of BiVO4 photoanodes for solar water splitting. J. Chem. 6(38), 18694–18700 (2018)

  38. 38.

    Walsh, A.; Yan, Y.F.; Huda, M.N.; Jassim, M.M.; Wei, S.H.: Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. J. Chem. Mater. 21(3), 547–551 (2009)

  39. 39.

    Zhang, B.; Zhao, S.Y.; Wang, H.H.; Zhao, T.J.; Liu, Y.X.; Lv, L.B.; Wei, X.; Li, X.H.; Chen, J.S.: The solution-phase process of a g-C3N4/BiVO4 dyad to a large-area photoanode: interfacial synergy for highly efficient water oxidation. J. Chem. Commun. 53(76), 10544–10547 (2017)

  40. 40.

    Yan, H.; Min, F.; Tao, H.: Synthesis of g-C3N4/BiVO4 nanocomposite photocatalyst and its application in photocatalytic reduction of CO2. J. Acta Phys.-Chim. Sin. 31(6), 1145–1152 (2015)

  41. 41.

    Li, C.J.; Wang, S.P.; Wang, T.; Wei, Y.J.; Zhang, P.; Gong, J.L.: Monoclinic porous BiVO4 networks decorated by discrete g-C3N4 nano-Islands with tunable coverage for highly efficient photocatalysis. J. Small. 10(14), 2783–2790 (2014)

  42. 42.

    Ou, M.; Zhong, Q.; Zhang, S.L.; Yu, L.M.: Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J. Alloys Compd. 626, 401–409 (2015)

  43. 43.

    Olmo, L.D.; Dommett, M.; Oevreeide, I.H.; Walsh, A.; Otero, R.C.: Water oxidation catalysed by quantum- sized BiVO4+. J. Mater. Chem. A. 6(48), 24965–24970 (2018)

  44. 44.

    Song, C.L.; Jin, Z.B.; Li, F.Y.; Zhen, M.M.; Xia, L.; Xu, L.: Enhanced photocatalytic performance of bismuth vanadate assisted by polyoxometalates and phthalocyanine. J. New J. Chem. 42(24), 19678–19684 (2018)

  45. 45.

    Xia, T.; Chen, M.; Xiao, L.S.; Fan, W.Q.; Mao, B.D.; Xu, D.B.; Guan, P.; Zhu, J.J.; Shi, W.D.; Chin, J.: Dip-coating synthesis of P-doped BiVO4 photoanodes with enhanced photoelectrochemical performance. J. Inst. Chem. Eng. 93, 582–589 (2018)

  46. 46.

    Li, G.Q.; Kou, S.W.; Zhang, F.; Zhang, W.F.; Guo, H.Z.: Target stoichiometry and growth temperature impact on properties of BiVO4 (010) epitaxial thin films. J. Cryst. Eng. Comm. 20(43), 6950–6956 (2018)

  47. 47.

    Yu, J.G.; Li, C.; Liu, S.W.: Effect of PSS on morphology and optical properties of ZnO. J. Colloid Interface Sci. 326(2), 433–438 (2008)

  48. 48.

    Packiaraj, R.; Devendran, P.; Bahadur, S.A.; Nallamuthu, N.: Structural and electrochemical studies of Scheelite type BiVO4 nanoparticles: synthesis by simple hydrothermal method. J. Mater. Sci.: Mater. Electron. 29(15), 13265–13276 (2018)

  49. 49.

    Hernández, S.; Gerardi, G.; Fina, K.A.; Russo, N.: Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. J. Appl. Catal. B. 190, 66–74 (2016)

  50. 50.

    Fajrina, N.; Tahir, M.: 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0D nanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture. J. Appl. Surf. Sci. 471, 1053–1064 (2019)

  51. 51.

    Thimsen, E.; Le Formal, F.; Gratzel, M.; Warren, S.C.: Influence of plsmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. J. Nano Lett. 11(1), 35–43 (2011)

  52. 52.

    Abdi, F.F.; Dabirian, A.; Dam, B.; van de Krol, R.: Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core-shell nanoparticles. J. Phys. Chem. 16(29), 15272–15277 (2014)

  53. 53.

    Kowalska, E.; Mahaney, O.O.; Ohtani, A.R.: Visible light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. J. Phys. Chem. 114(5), 2344–2355 (2010)

Download references


This work is supported by the National Nature Science Foundation of China (Nos. 51879018, 51771042 and 21676040) and the Fundamental Research Funds for the Central Universities (Nos. 3132016065 and 313016341).

Author information

Correspondence to Feng Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhou, F. Synthesis of g-C3N4/BiVO4 and Its Photocatalytic Performance for Hydrogen Production. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04399-5

Download citation


  • Composite photocatalysts
  • BiVO4
  • g-C3N4
  • Hydrogen production
  • Pt deposition