Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cooling Analysis of Cylindrical Void Method for an Injection Mould in Injection Moulding Process

Abstract

As a matter of fact, the cooling method selection is one of the most important steps in the design of injection mould. However, inappropriate cooling system will result in many undesired defects such as differential shrinkage and warpage on the moulded part. From this point of view, the comprehensive study of cylindrical void method (CVM) has been attempted in this study which is known as an alternative effective cooling method. Therefore, this study employs the three-dimensional time-dependent numerical analysis to determine the performance of cooling injection moulding. Initially, a finite element method is used to solve the system of equations of the flow and heat transfer problem. Subsequently, the temperature fields and other analysis results have been obtained via ANSYS Workbench. The study reveals that the Nusselt number, Biot Number and heat flux at the fluid–core interface are smaller when the CVM method is being used compared to the straight-drilled method. These results are mainly attributed to the presence of big vortices which prevent a complete heat transfer. Consequently, the use of the CVM method does not improve the cooling efficiency, but it is a good idea and requires further investigation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Zhou, H.: Computer Modeling for Injection Molding: Simulation, Optimization, and Control. Wiley, Hoboken (2012)

  2. 2.

    Shayfull, Z.; Sharif, S.; Zain, A.M.; Ghazali, M.F.; Saad, R.M.: Potential of conformal cooling channels in rapid heat cycle molding: a review. Adv. Polym. Technol. 3, 1 (2014)

  3. 3.

    Wang, Y.; Yu, K.M.; Wang, C.C.: Spiral and conformal cooling in plastic injection molding. Comput. Aided Des. 63, 1–11 (2015)

  4. 4.

    Venkatesh, G.; Kumar, Y.R.; Raghavendra, G.: Comparison of straight line to conformal cooling channel in injection molding. Mater. Today-Proc. 4(2), 1167–1173 (2017)

  5. 5.

    Rees, H.: Understanding Injection Mold Design. Hanser, Munich (2001)

  6. 6.

    Park, H.S.; Dang, X.P.: Optimization of conformal cooling channels with array of baffles for plastic injection mold. Int. J. Precis. Eng. Manuf. 11, 879–890 (2010)

  7. 7.

    Hassan, H.; Regnier, N.; Le Bot, C.; Defaye, G.: 3D study of cooling system effect on the heat transfer during polymer injection molding. Int. J. Therm. Sci. 49, 161–169 (2010)

  8. 8.

    Saifullah, A.B.M.; Masood, S.H.; Sbarski, I.: Thermal–structural analysis of bi-metallic conformal cooling for injection moulds. Int. J. Adv. Manuf. Technol. 62, 123–133 (2012)

  9. 9.

    Shayfull, Z.; Sharif, S.; Zain, A.M.; Saad, R.M.; Fairuz, M.A.: Milled groove square shape conformal cooling channels in injection molding process. Mater. Manuf. Process. 28, 884–891 (2013)

  10. 10.

    Rahim, S.Z.A.; Sharif, S.; Zain, A.M.; Nasir, S.M.; Mohd, S.R.: Improving the quality and productivity of molded parts with a new design of conformal cooling channels for the injection molding process. Adv. Polym. Technol. 35, 1 (2016)

  11. 11.

    Kitayama, S.; Miyakawa, H.; Takano, M.; Aiba, S.: Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel. Int. J. Adv. Manuf. Technol. 88, 1–10 (2016)

  12. 12.

    Renko, J.B.; Kemeny, D.M.; Nyiro, J.; Kovacs, D.: Comparison of cooling simulations of injection moulding tools created with cutting machining and additive manufacturing. Mater. Today-Proc. 12, 462–469 (2019)

  13. 13.

    Kazmer, D.O.: Injection Mold Design Engineering. Hanser, Munich (2007)

  14. 14.

    Jahan, S.A.; El-Mounayri, H.: Optimal conformal cooling channels in 3D printed dies for plastic injection molding. Procedia Manuf. 5, 888–900 (2016)

  15. 15.

    Lucchetta, G.; Masato, D.; Sorgato, M.: Optimization of mold thermal control for minimum energy consumption in injection molding of polypropylene parts. J. Clean. Prod. 182, 217–226 (2018)

  16. 16.

    Fu, J.; Ma, Y.: A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time. Robot. Comput.-Int. Manuf. 56, 66–74 (2019)

  17. 17.

    Li, C.L.; Li, C.G.; Mok, A.C.K.: Automatic layout design of plastic injection mould cooling system. Comput. Aided Des. 37, 645–662 (2005)

  18. 18.

    Hassan, H.; Regnier, N.; Pujos, C.; Arquis, E.; Defaye, G.: Modeling the effect of cooling system on the shrinkage and temperature of the polymer by injection molding. Appl. Therm. Eng. 30, 1547–1557 (2010)

  19. 19.

    Nian, S.C.; Wu, C.Y.; Huang, M.S.: Warpage control of thin-walled injection molding using local mold temperatures. Int. Commun. Heat Mass Transf. 61, 102–110 (2015)

  20. 20.

    Park, H.S.; Pham, N.H.: Design of conformal cooling channels for an automotive part. Int. J. Automot. Technol. 10, 87–93 (2009)

  21. 21.

    Ferreira, J.C.; Mateus, A.: Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding. J. Mater. Process. Technol. 142, 508–516 (2003)

  22. 22.

    Tang, S.H.; Kong, Y.M.; Sapuan, S.M.; Samin, R.; Sulaiman, S.: Design and thermal analysis of plastic injection mould. J. Mater. Process. Technol. 171, 259–267 (2006)

  23. 23.

    Gloinn, T.O.; Hayes, C.; Hanniffy, P.; Vaugh, K.: FEA simulation of conformal cooling within injection moulds. Int. J. Manuf. Res. 2, 162–170 (2007)

  24. 24.

    Mohamed, O.A.; Masood, S.H.; Saifullah, A.: A simulation study of conformal cooling channels in plastic injection molding. Int. J. Eng. Res. 2, 344–348 (2013)

  25. 25.

    Xiao, C.L.; Huang, H.X.; Yang, X.: Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts. Appl. Therm. Eng. 100, 478–489 (2016)

  26. 26.

    Saifullah, A.B.M.; Masood, S.H.; Nikzad, M.; Brandt, M.: An investigation on fabrication of conformal cooling channel with direct metal deposition for injection moulding. In: Sereni, J.G. (ed.) Reference Module in Materials Science and Materials Engineering. Elsevier, Amsterdam (2016)

  27. 27.

    Sun, Y.F.; Lee, K.S.; Nee, A.Y.C.: Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds. Int. J. Adv. Manuf. Technol. 24, 715–726 (2004)

  28. 28.

    Kitayama, S.; Tamada, K.; Takano, M.; Aiba, S.: Numerical optimization of process parameters in plastic injection molding for minimizing weldlines and clamping force using conformal cooling channel. J. Manuf. Process. 32, 782–790 (2018)

  29. 29.

    Park, H.S.; Dang, X.P.: Development of a smart plastic injection mold with conformal cooling channels. Procedia Manuf. 10, 48–59 (2017)

  30. 30.

    Dimla, E.: Design considerations of conformal cooling channels in injection moulding tools design: an overview. J. Therm. Eng. 1, 627–635 (2015)

  31. 31.

    Dimla, D.E.; Camilotto, M.; Miani, F.: Design and optimisation of conformal cooling channels in injection moulding tools. J. Mater. Process. Technol. 164, 1294–1300 (2005)

  32. 32.

    Ordieres-Mere, J.; Bello-García, A.; Munoz-Munilla, V.; Del-Coz-Diaz, J.J.: Finite element analysis of the hyper-elastic contact problem in automotive door sealing. J. Non-Cryst. Solids 354, 5331–5333 (2008)

  33. 33.

    Del Coz, D.J.J.; Garcia Nieto, P.J.; Bello Garcia, A.; Guerrero Munoz, J.; Ordieres Mere, J.: Finite volume modeling of the non-isothermal flow of a non-Newtonian fluid in a rubber’s extrusion die. J. Non-Cryst. Solids 354, 5334–5336 (2008)

  34. 34.

    Del Coz Diaz, J.J.; Garcia Nieto, P.J.; Ordieres Mere, J.; Bello Garcia, A.: Computer simulation of the laminar nozzle flow of a non-Newtonian fluid in a rubber extrusion process by the finite volume method and experimental comparison. J. Non-Cryst. Solids 353, 981–983 (2007)

  35. 35.

    Khelfi, D.; Abdellah, El-HA; Ait-Messaoudene, N.: Modeling of a 3D plasma thermal spraying and the effect of the particle injection angle. Revue Des Energies Renouvelables CISM 8, 205–216 (2008)

  36. 36.

    Launder, B.E.; Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)

  37. 37.

    ANSYS CFX: Manual Theory Guide of ANSYS CFX, Ver 13.0. ANSYS Inc. (2012).

  38. 38.

    Kumbhare, M.B.; Dawande, S.D.: Performance evaluation of plate heat exchanger in laminar and turbulent flow conditions. Int. J. Chem. Sci. Appl. 4, 77–83 (2013)

  39. 39.

    Shabany, Y.: Heat Transfer. CRC Press, Boca Raton (2011)

  40. 40.

    Zink, B.; Kovacs, N.K.; Kovacs, J.G.: Thermal analysis based method development for novel rapid tooling applications. Int. Commun. Heat Mass Transf. 108, 104297 (2019)

  41. 41.

    Biondani, F.G.; Bissacco, G.; Mohanty, S.; Tang, P.T.; Norgaard Hansen, H.: Multi-metal additive manufacturing process chain for optical quality mold generation. J. Mater. Process. Technol. 277, 116451 (2020)

Download references

Acknowledgements

We would like to acknowledge the reviewer(s) for the helpful advice and comments provided. The authors wish to thank the DGRSDT/MESRS, Algeria, for their financial support of this study.

Author information

Correspondence to Abdellah Abdellah El-Hadj or Shayfull Zamree Abd Rahim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdellah El-Hadj, A., Abd Rahim, S.Z., Mat Saad, M.N. et al. Cooling Analysis of Cylindrical Void Method for an Injection Mould in Injection Moulding Process. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04396-8

Download citation

Keywords

  • Mould
  • Injection moulding
  • Cooling
  • Simulation
  • Cylindrical void method