Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Graphene In Situ Coated High-Oxygen Vacancy Co3O4−x Sphere Composites for High-Stability Supercapacitors

  • 7 Accesses


In this paper, the graphene in situ coated Co3O4 core–shell heterogeneous composites have been facilely fabricated via microwave plasma-enhanced chemical vapor deposition method. The graphene thin-shell-layer-covered Co3O4−x particles were revealed by FE-SEM, XRD, XPS and Raman spectra. And the ratio of Co2+/Co3+ is adjusted, and abundant surface oxygen vacancies are created by the microwave plasma etching, which can contribute to the improvement of electrochemical performance for the Co3O4/graphene core–shell composites. Results present that the graphene in situ coated Co3O4−x has a specific capacitance of 192.8 F g−1 under the current density of 0.5 A g−1, which is 4.5 times than that of the original Co3O4 sphere. Meanwhile, the core–shell heterogeneous composite displays excellent cyclic stability with ~ 98.5% specific capacitance retained after 20,000 cycle tests.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortiere, A.; Daffos, B.; Taberna, P.L.; Chaudret, B.; Gogotsi, Y.; Simon, P.: On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016)

  2. 2.

    Lin, Z.; Goikolea, E.; Balducci, A.; Naoi, K.; Taberna, P.L.; Salanne, M.; Yushin, G.; Simon, P.: Materials for supercapacitors: when Li-ion battery power is not enough. Mater. Today 21, 419–436 (2018)

  3. 3.

    Zhai, S.L.; Karahan, H.E.; Wang, C.J.; Pei, Z.X.; Wei, L.; Chen, Y.: 1D supercapacitors for emerging electronics: current status and future directions. Adv. Mater. 32, 1902387 (2019)

  4. 4.

    Li, H.; Qi, C.S.; Tao, Y.; Liu, H.B.; Wang, D.W.; Li, F.; Yang, Q.H.; Cheng, H.M.: Quantifying the volumetric performance metrics of supercapacitors. Adv. Energy Mater. 9, 1900079 (2019)

  5. 5.

    Ho, K.C.; Lin, L.Y.: A review of electrode materials based on core-shell nanostructures for electrochemical supercapacitors. J. Mater. Chem. A 7, 3516–3530 (2019)

  6. 6.

    Byun, S.; Shin, B.; Yu, J.: Metal sputtered graphene based hybrid films comprising tin oxide/reduced graphene oxide/Ni as electrodes for high-voltage electrochemical capacitors. Carbon 129, 1–7 (2018)

  7. 7.

    Sun, A.K.; Xie, L.; Wang, D.Z.; Wu, Z.Z.: Enhanced energy storage performance from Co-decorated MoS2 nanosheets as supercapacitor electrode materials. Ceram. Int. 44, 13434–13438 (2018)

  8. 8.

    Hu, N.; Gong, W.H.; Huang, L.; Shen, P.K.: Ultrahigh energy density asymmetric electrochemical capacitors based on flower-like ZnO/Co3O4 nanobundle arrays and stereotaxically constricted graphene. J. Mater. Chem. A 7, 1273–1280 (2019)

  9. 9.

    Wang, P.; Zhou, H.; Meng, C.F.; Wang, Z.T.; Akhtar, K.; Yuan, A.H.: Cyanometallic framework-derived hierarchical Co3O4–NiO/graphene foam as high-performance binder-free electrodes for supercapacitors. Chem. Eng. J. 369, 57–63 (2019)

  10. 10.

    Cui, J.; Yao, S.S.; Lu, Z.H.; Huang, J.Q.; Chong, W.G.; Ciucci, F.; Kim, J.K.: Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv. Energy Mater. 8, 1702488 (2018)

  11. 11.

    Su, L.J.; Lei, S.L.; Liu, L.; Liu, L.Y.; Zhang, Y.F.; Shi, S.Q.; Yan, X.B.: Sprinkling MnFe2O4 quantum dots on nitrogen-doped graphene sheets: the formation mechanism and application for high-performance supercapacitor electrodes. J. Mater. Chem. A 6, 9997–10007 (2018)

  12. 12.

    Zhang, X.; Zhang, R.J.; Xiang, C.L.; Liu, Y.; Zou, Y.J.; Chu, H.L.; Qiu, S.J.; Xu, F.; Sun, L.X.: Polydopamine-assisted formation of Co3O4-nanocube-anchored reduced graphene oxide composite for high-performance supercapacitors. Ceram. Int. 45, 13894–13902 (2019)

  13. 13.

    Yin, X.J.; Zhi, C.W.; Sun, W.W.; Lv, L.P.; Wang, Y.: Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. J. Mater. Chem. A 7, 7800–7814 (2019)

  14. 14.

    Yang, S.H.; Liu, Y.Y.; Hao, Y.F.; Yang, X.P.; Goddard, W.A.; Zhang, X.L.; Cao, B.Q.: Oxygen-Vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5, 1700659 (2018)

  15. 15.

    Divyapriya, G.; Vijayakumar, K.K.; Nambi, I.: Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system. Desalination 451, 102–110 (2019)

  16. 16.

    Lin, G.Y.; Jiang, Y.L.; He, C.G.; Huang, Z.Y.; Zhang, X.F.; Yang, Y.K.: In situ encapsulation of Co3O4 polyhedra in graphene sheets for high-capacitance supercapacitors. Dalton Trans. 48, 5773–5778 (2019)

  17. 17.

    Wang, C.W.; Zhao, Z.; Li, X.F.; Yan, R.; Wang, J.; Li, A.N.; Duan, X.Y.; Wang, J.Y.; Liu, Y.; Wang, J.Z.: Three-dimensional framework of graphene nanomeshes shell/Co3O4 synthesized as superior bifunctional electrocatalyst for Zinc–Air batteries. ACS Appl. Mater. Interfaces. 9, 41273–41283 (2017)

  18. 18.

    Qiu, D.F.; Ma, X.; Zhang, J.D.; Zhao, B.; Lin, Z.X.: In situ synthesis of mesoporous Co3O4 nanorods anchored on reduced graphene oxide nanosheets as supercapacitor electrodes. Chem. Phys. Lett. 710, 188–192 (2018)

  19. 19.

    Zou, Y.J.; Cai, C.L.; Xiang, C.L.; Huang, P.R.; Chu, H.L.; She, Z.; Xu, F.; Sun, L.X.; Kraatz, H.B.: Simple synthesis of core-shell structure of Co–Co3O4 @ carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor. Electrochim. Acta 261, 537–547 (2018)

  20. 20.

    Wang, G.M.; Yang, Y.; Han, D.D.; Li, Y.: Oxygen defective metal oxides for energy conversion and storage. Nano Today 13, 23–39 (2017)

  21. 21.

    Wang, J.K.; Deng, Q.H.; Wang, Y.J.: Tunable oxidation state of Co in CoOx@N-doped graphene derived from PANI/Co3O4 and the enhanced oxygen reduction catalysis. Appl. Surf. Sci. 465, 665–671 (2019)

  22. 22.

    Chen, T.; Li, S.Z.; Ma, L.; Zhao, X.Z.; Fang, G.J.: Aldehyde reduced Co3O4 to form oxygen vacancy and enhance the electrochemical performance for oxygen evolution reaction and supercapacitors. Nanotechnology 30, 395403 (2019)

  23. 23.

    Duan, Y.; Hu, T.; Yang, L.; Gao, J.Y.; Guo, S.H.; Hou, M.; Ye, X.L.: Facile fabrication of electroactive microporous Co3O4 through microwave plasma etching for supercapacitors. J. Alloys Compd. 771, 156–161 (2019)

  24. 24.

    Muthu, M.; Gopal, J.; Chun, S.; Lee, S.K.: Hydrophobic bacteria-repellant graphene coatings from recycled pencil stubs. Arab. J. Sci. Eng. 43, 241–249 (2018)

  25. 25.

    Korucu, H.; Simsek, B.; Yartasi, A.: A TOPSIS-based taguchi design to investigate optimum mixture proportions of graphene oxide powder synthesized by hummers method. Arab. J. Sci. Eng. 43, 6033–6055 (2018)

  26. 26.

    Kumar, A.; Khan, S.; Zulfequar, M.; Harsh,; Husain, M.: Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD. Appl. Surf. Sci. 402, 161–167 (2017)

  27. 27.

    Zvyagina, A.I.; Melnikova, E.K.; Averin, A.A.; Baranchikov, A.E.; Tameev, A.R.; Malov, V.V.; Ezhov, A.A.; Grishanov, D.A.; Gun, J.; Ermakova, E.V.; Arslanov, V.V.; Kalinina, M.A.: A facile approach to fabricating ultrathin layers of reduced graphene oxide on planar solids. Carbon 134, 62–70 (2018)

  28. 28.

    Ding, Y.; Zhang, Z.; Luo, B.H.; Liao, Q.L.; Liu, S.; Liu, Y.C.; Zhang, Y.: Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 10, 980–990 (2017)

  29. 29.

    Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013)

  30. 30.

    Petitto, S.C.; Marsh, E.M.; Carson, G.A.; Langell, M.A.: Cobalt oxide surface chemistry: the interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J. Mol. Catal. A Chem. 281, 49–58 (2008)

  31. 31.

    Wang, H.Y.; Hung, S.F.; Chen, H.Y.; Chan, T.S.; Chen, H.M.; Liu, B.: In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 138, 36–39 (2016)

  32. 32.

    Yang, Z.K.; Lin, L.; Xu, A.W.: 2D Nanoporous Fe-N/C nanosheets as highly efficient non-platinum electrocatalysts for oxygen reduction reaction in Zn–Air battery. Small 12, 5710–5719 (2016)

  33. 33.

    Bao, J.; Zhang, X.D.; Fan, B.; Zhang, J.J.; Zhou, M.; Yang, W.L.; Hu, X.; Wang, H.; Pan, B.C.; Xie, Y.: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 54, 7399–7404 (2015)

  34. 34.

    Li, M.P.; El-Kady, M.F.; Hwang, J.Y.; Kowal, M.D.; Marsh, K.; Wang, H.S.; Zhao, Z.J.; Kaner, R.B.: Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Res. 11, 2836–2846 (2018)

  35. 35.

    Ma, T.Y.; Dai, S.; Jaroniec, M.; Qiao, S.Z.: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925–13931 (2014)

  36. 36.

    Zou, X.X.; Su, J.; Silva, R.; Goswami, A.; Sathe, B.R.; Asefa, T.: Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem. Commun. 49, 7522–7524 (2013)

  37. 37.

    Chen, Z.; Kronawitter, C.X.; Koel, B.E.: Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction. Phys. Chem. Chem. Phys. 17, 29387–29393 (2015)

  38. 38.

    Wang, Y.C.; Zhou, T.; Jiang, K.; Da, P.M.; Peng, Z.; Tang, J.; Kong, B.A.; Cai, W.B.; Yang, Z.Q.; Zheng, G.F.: Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 4, 1400696 (2014)

  39. 39.

    Ma, L.B.; Gao, X.; Zhang, W.J.; Yuan, H.; Hu, Y.; Zhu, G.Y.; Chen, R.P.; Chen, T.; Tie, Z.X.; Liu, J.; Wu, T.; Jin, Z.: Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano Energy 53, 91–96 (2018)

Download references


This research was funded by National Natural Science Foundation of China, No. 51864028; the Applied Basic Research Fund Project of Yunnan Province, Nos. 2018FD053 and 2018FA029; Yunnan Province Funds for Distinguished Young Scientists, No. 2019FJ005; Yunnan Ten Thousand Talents Plan Young & Elite Talents Project, No. YNWRQNBJ-2018-311; Science Research Foundation of Yunnan Provincial Education Department, No. 2018JS306.

Author information

Correspondence to Shenghui Guo or Tu Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Yang, L., Gao, J. et al. Graphene In Situ Coated High-Oxygen Vacancy Co3O4−x Sphere Composites for High-Stability Supercapacitors. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04337-5

Download citation


  • Co3O4
  • Graphene
  • Supercapacitor
  • Plasma etching