Advertisement

Synthesis and Characterization of Ti–Fe Oxide Nanomaterials: Adsorption–Degradation of Methyl Orange Dye

  • Buzuayehu AbebeEmail author
  • H. C. Ananda Murthy
  • Yilkal Dessie
Research Article-Chemistry
  • 46 Downloads

Abstract

Organic solvent-free impregnation method was used to synthesize titanium-iron oxides (TIOs) nanomaterial. The physical properties of synthesized TIOs materials were characterized by XRD, SEM–EDX, BET, UV–Vis, and FTIR analytical techniques. The appearance of iron oxide (IO) on SEM image, XRD, and EDX spectra, the redshift on UV–Vis spectra of TIO compared to titanium oxide (TO), and intensity reduction in FTIR spectra proves the good impregnation of IO in TO lattice. The Langmuir and Dubinin–Radushkevich adsorption isotherm test in the dark show the domination of physical adsorption. Furthermore, the Flory–Huggins isotherm model that has \(\Delta G\) = −11.40 kJ/mol and Fowler–Guggenheim model that has \(w\) = −106.5 kJ/mol confirm the spontaneity of the reaction and the presence of adsorbate–adsorbate repulsive interaction, respectively. The passing of the linear Weber–Morris intraparticle adsorption–diffusion plot through the origin and well-fitting of its coefficient of determination (R2) value relative to pseudo-first-order indicates the domination of adsorption–diffusion mechanism. On the methyl orange degradation experiment, as the percentage of IO increases from 4 to 12, its degradation efficiency decreases, i.e., TIO with 4% calcined at 500 °C (TIO-4) has higher degradation efficiency with k values of 0.03025.

Keywords

Binary metal oxides Adsorption–photocatalysis Methyl orange Mechanism 

Notes

Acknowledgements

Authors are grateful to the management of Adama Science and Technology University for providing financial support. Authors also express deep acknowledgement to Dr. Dereje Tsegaye for his write up improvement and Mr. Guta Amanu for his assistance in the laboratory.

Authors’ contribution

All authors have contributed toward the achievement of the study in preparation of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

13369_2019_4328_MOESM1_ESM.docx (499 kb)
Supplementary material 1 (DOCX 498 kb)

References

  1. 1.
    Basheer, A.A.: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018).  https://doi.org/10.1002/chir.22808 CrossRefGoogle Scholar
  2. 2.
    Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30, 1088–1095 (2018).  https://doi.org/10.1002/chir.22989 CrossRefGoogle Scholar
  3. 3.
    Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018).  https://doi.org/10.1016/j.molliq.2018.04.021 CrossRefGoogle Scholar
  4. 4.
    Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012).  https://doi.org/10.1021/cr300133d CrossRefGoogle Scholar
  5. 5.
    Ali, I.; Basheer, A.A.; Kucherova, A.; Memetov, N.; Pasko, T.; Ovchinnikov, K.; Pershin, V.; Kuznetsov, D.; Galunin, E.; Grachev, V.; Tkachev, A.: Advances in carbon nanomaterials as lubricants modifiers. J. Mol. Liq. 279, 251–266 (2019).  https://doi.org/10.1016/j.molliq.2019.01.113 CrossRefGoogle Scholar
  6. 6.
    Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019).  https://doi.org/10.1016/j.envint.2019.03.029 CrossRefGoogle Scholar
  7. 7.
    Burakova, E.A.; Dyachkova, T.P.; Rukhov, A.V.; Tugolukov, E.N.; Galunin, E.V.; Tkachev, A.G.; Basheer, A.A.; Ali, I.: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018).  https://doi.org/10.1016/j.molliq.2018.01.062 CrossRefGoogle Scholar
  8. 8.
    Ali, I.; Al-Othman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A.: Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ. Sci. Pollut. Res. (2014).  https://doi.org/10.1007/s11356-013-2235-3 CrossRefGoogle Scholar
  9. 9.
    Ali, I.; Jain, C.K.: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84, 947–964 (2004).  https://doi.org/10.1080/03067310410001729637 CrossRefGoogle Scholar
  10. 10.
    Ali, I.; Alothman, Z.A.; Sanagi, M.M.: Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015).  https://doi.org/10.1016/j.molliq.2015.07.034 CrossRefGoogle Scholar
  11. 11.
    Ali, I.; Khan, T.A.; Asim, M.: Removal of arsenate from groundwater by electrocoagulation method. Environ. Sci. Pollut. Res. 19, 1668–1676 (2012).  https://doi.org/10.1007/s11356-011-0681-3 CrossRefGoogle Scholar
  12. 12.
    Ali, I.; AL-Othman, Z.A.; Alwarthan, A.: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016).  https://doi.org/10.1016/j.molliq.2016.09.108 CrossRefGoogle Scholar
  13. 13.
    Ali, I.; Alothman, Z.A.; Alwarthan, A.: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017).  https://doi.org/10.1016/j.molliq.2017.04.028 CrossRefGoogle Scholar
  14. 14.
    Ali, I.; Aboul-Enein, H.Y.: Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48, 275–278 (2002).  https://doi.org/10.1016/S0045-6535(02)00085-1 CrossRefGoogle Scholar
  15. 15.
    Ali, I.; AL-Othman, Z.A.; Alharbi, O.M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J. Mol. Liq. 218, 465–472 (2016).  https://doi.org/10.1016/j.molliq.2016.02.088 CrossRefGoogle Scholar
  16. 16.
    Ali, I.; Alothman, Z.A.; Al-Warthan, A.: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Technol. 13, 733–742 (2016).  https://doi.org/10.1007/s13762-015-0919-6 CrossRefGoogle Scholar
  17. 17.
    Gallego-urrea, J.A.; Hammes, J.; Cornelis, G.; Hassellöv, M.: Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: in fluence of initial particle concentration. IMPACT 3–4, 67–74 (2016).  https://doi.org/10.1016/j.impact.2016.10.004 CrossRefGoogle Scholar
  18. 18.
    Tang, X.; Zheng, H.; Teng, H.; Sun, Y.; Guo, J.; Xie, W.; Yang, Q.; Chen, W.: Chemical coagulation process for the removal of heavy metals from water: a review. Desalin. Water Treat. 57, 1733–1748 (2016).  https://doi.org/10.1080/19443994.2014.977959 CrossRefGoogle Scholar
  19. 19.
    Wang, D.K.; Elma, M.; Motuzas, J.; Hou, W.; Xie, F.: Rational design and synthesis of molecular-sieving, photocatalytic, hollow fiber membranes for advanced water treatment applications. J. Memb. Sci. 524, 163–173 (2017).  https://doi.org/10.1016/j.memsci.2016.10.052 CrossRefGoogle Scholar
  20. 20.
    Charles, J.; Bradu, C.; Morin-Crini, N.; Sancey, B.; Winterton, P.; Torri, G.; Badot, P.-M.; Crini, G.: Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: chemical abatement. J. Saudi Chem. Soc. 20, 185–194 (2016).  https://doi.org/10.1016/j.jscs.2013.03.007 CrossRefGoogle Scholar
  21. 21.
    Pype, M.; Lawrence, M.G.; Keller, J.; Gernjak, W.: Reverse osmosis integrity monitoring in water reuse: the challenge to verify virus removal: A review. Water Res. 98, 384–395 (2016).  https://doi.org/10.1016/j.watres.2016.04.040 CrossRefGoogle Scholar
  22. 22.
    Chen, F.; Ho, P.; Ran, R.; Chen, W.; Si, Z.; Wu, X.; Weng, D.; Huang, Z.; Lee, C.: Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. J. Alloy. Compd. 714, 560–566 (2017).  https://doi.org/10.1016/j.jallcom.2017.04.138 CrossRefGoogle Scholar
  23. 23.
    Rashidi Nodeh, H.; Wan Ibrahim, W.A.; Ali, I.; Sanagi, M.M.: Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ. Sci. Pollut. Res. 23, 9759–9773 (2016).  https://doi.org/10.1007/s11356-016-6137-z CrossRefGoogle Scholar
  24. 24.
    Ali, I.: Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J. Mol. Liq. 271, 677–685 (2018).  https://doi.org/10.1016/j.molliq.2018.09.021 CrossRefGoogle Scholar
  25. 25.
    Ali, I.; Alharbi, O.M.L.; Tkachev, A.; Galunin, E.; Burakov, A.; Grachev, V.A.: Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. 25, 7315–7329 (2018).  https://doi.org/10.1007/s11356-018-1315-9 CrossRefGoogle Scholar
  26. 26.
    Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Alwarthan, A.: Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids Surf. B. Biointerfaces 171, 606–613 (2018).  https://doi.org/10.1016/j.colsurfb.2018.07.071 CrossRefGoogle Scholar
  27. 27.
    Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.: Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using co/TiO2 nanoparticles. Photochem. Photobiol. 94, 935–941 (2018).  https://doi.org/10.1111/php.12937 CrossRefGoogle Scholar
  28. 28.
    Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Al-Mohaimeed, A.M.; Alwarthan, A.: Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019).  https://doi.org/10.1016/j.envres.2018.12.066 CrossRefGoogle Scholar
  29. 29.
    Alothman, Z.A.; Badjah, A.Y.; Ali, I.: Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4-tert-octylphenol endocrine disruptor in water. J. Mol. Liq. 275, 41–48 (2019).  https://doi.org/10.1016/j.molliq.2018.11.049 CrossRefGoogle Scholar
  30. 30.
    Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalin. Water Treat. 57, 10409–10421 (2016).  https://doi.org/10.1080/19443994.2015.1041164 CrossRefGoogle Scholar
  31. 31.
    Wu, L.; Yan, H.; Xiao, J.; Li, X.; Wang, X.; Zhao, T.: Characterization and photocatalytic properties of nano-Fe2O3–TiO2 composites prepared through the gaseous detonation method. Ceram. Int. 43, 14334–14339 (2017).  https://doi.org/10.1016/j.ceramint.2017.07.189 CrossRefGoogle Scholar
  32. 32.
    Mianxin, S.; Liang, B.; Tianliang, Z.; Xiaoyong, Z.: Surface ζ potential and photocatalytic activity of rare earths doped TiO2. J. Rare Earths 26, 693–699 (2008).  https://doi.org/10.1016/S1002-0721(08)60165-9 CrossRefGoogle Scholar
  33. 33.
    Wang, D.; Wang, Y.; Li, X.; Luo, Q.; An, J.; Yue, J.: Sunlight photocatalytic activity of polypyrrole: TiO2 nanocomposites prepared by ‘in situ’ method. Catal. Commun. 9, 1162–1166 (2008).  https://doi.org/10.1016/j.catcom.2007.10.027 CrossRefGoogle Scholar
  34. 34.
    Macák, J.M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P.: Dye-sensitized anodic TiO2 nanotubes. Electrochem. Commun. 7, 1133–1137 (2005).  https://doi.org/10.1016/j.elecom.2005.08.013 CrossRefGoogle Scholar
  35. 35.
    An, H.; Zhou, J.; Li, J.; Zhu, B.; Wang, S.; Zhang, S.; Wu, S.; Huang, W.: Deposition of Pt on the stable nanotubular TiO2 and its photocatalytic performance. Catal. Commun. 11, 175–179 (2009).  https://doi.org/10.1016/j.catcom.2009.09.020 CrossRefGoogle Scholar
  36. 36.
    Wang, T.; Yang, G.; Liu, J.; Yang, B.; Ding, S.; Yan, Z.; Xiao, T.: Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres. Appl. Surf. Sci. 311, 314–323 (2014)CrossRefGoogle Scholar
  37. 37.
    Wang, Z.; Liu, Y.; Huang, B.; Dai, Y.; Lou, Z.: Progress on extending the light absorption spectra of photocatalysts. PCCP 2, 2758–2774 (2014).  https://doi.org/10.1039/c3cp53817f CrossRefGoogle Scholar
  38. 38.
    Mamba, G.; Mishra, A.K.: Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 198, 347–377 (2016).  https://doi.org/10.1016/j.apcatb.2016.05.052 CrossRefGoogle Scholar
  39. 39.
    Li, X.; Yu, J.; Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016).  https://doi.org/10.1039/C5CS00838G CrossRefGoogle Scholar
  40. 40.
    Wahyuningsih, S.; Ramelan, A.H.; Prasetyawati, L.; Saputri, L.N.M.Z.; Ichsan, S.; Kristiawan, Y.R.: The influence of Fe2O3 addition on the TiO2 structure and photoactivity properties. IOP Conf. Ser. Mater. Sci. Eng. 333, 012033 (2018).  https://doi.org/10.1088/1757-899X/333/1/012033 CrossRefGoogle Scholar
  41. 41.
    Abebe, B.; Ananda Murthy, H.C.: Synthesis and characterization of Ti–Fe oxide nanomaterials for lead removal. J. Nanomater. 2018, 1–10 (2018).  https://doi.org/10.1155/2018/9651039 CrossRefGoogle Scholar
  42. 42.
    Sharma, B.; Boruah, P.K.; Yadav, A.; Das, M.R.: TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. J. Environ. Chem. Eng. 6, 134–145 (2018).  https://doi.org/10.1016/j.jece.2017.11.025 CrossRefGoogle Scholar
  43. 43.
    Shojaie, A.; Fattahi, M.; Jorfi, S.; Ghasemi, B.: Synthesis and evaluations of—Fe3O4–TiO2–Ag nanocomposites for photocatalytic degradation of 4-chlorophenol (4-CP): effect of Ag and Fe compositions. Int. J. Ind. Chem. 9, 24–26 (2018)CrossRefGoogle Scholar
  44. 44.
    Jin, H.; Zhao, X.; Wu, Z.; Cao, C.; Guo, L.: Supercritical water synthesis of nano-particle catalyst on TiO2 and its application in supercritical water gasification of biomass. J. Exp. Nanosci. 12, 72–82 (2017).  https://doi.org/10.1080/17458080.2016.1262066 CrossRefGoogle Scholar
  45. 45.
    Lin, Y.P.; Mehrvar, M.: Photocatalytic treatment of an actual confectionery wastewater using Ag/TiO2/Fe2O3: optimization of photocatalytic reactions using surface response methodology. Catalysts 8, 409 (2018)CrossRefGoogle Scholar
  46. 46.
    Habibi, M.H.; Karimi, B.: Application of impregnation combustion method for fabrication of nanostructure CuO/ZnO composite oxide: XRD, FESEM, DRS and FTIR study. J. Ind. Eng. Chem. 20, 1566–1570 (2014).  https://doi.org/10.1016/j.jiec.2013.07.048 CrossRefGoogle Scholar
  47. 47.
    Mirmasoomi, S.R.; Mehdipour Ghazi, M.; Galedari, M.: Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep. Purif. Technol. 175, 418–427 (2017).  https://doi.org/10.1016/j.seppur.2016.11.021 CrossRefGoogle Scholar
  48. 48.
    Dai, X.; Lu, G.; Hu, Y.; Xie, X.; Wang, X.; Sun, J.: Reversible redox behavior of Fe2O3/TiO2 composites in the gaseous photodegradation process. Ceram. Int. 45, 13187–13192 (2019).  https://doi.org/10.1016/j.ceramint.2019.03.255 CrossRefGoogle Scholar
  49. 49.
    Sun, B.; Zhou, W.; Li, H.; Ren, L.; Qiao, P.; Xiao, F.; Wang, L.; Jiang, B.; Fu, H.: Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation. Appl. Catal. B Environ. 221, 235–242 (2018).  https://doi.org/10.1016/j.apcatb.2017.09.023 CrossRefGoogle Scholar
  50. 50.
    Singh, J.; Sharma, S.; Basu, S.: Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis. J. Photochem. Photobiol. C. 376, 32–42 (2019).  https://doi.org/10.1016/j.jphotochem.2019.03.004 CrossRefGoogle Scholar
  51. 51.
    Abbas, N.; Shao, G.N.; Haider, M.S.; Imran, S.M.; Soo, S.; Taik, H.: Sol–gel synthesis of TiO2–Fe2O3 systems: effects of Fe2O3 content and their photocatalytic properties. J. Ind. Eng. Chem. 39, 112–120 (2016).  https://doi.org/10.1016/j.jiec.2016.05.015 CrossRefGoogle Scholar
  52. 52.
    Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F.: Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 18, 3879–3890 (2016).  https://doi.org/10.1039/C6GC00611F CrossRefGoogle Scholar
  53. 53.
    Abebe, B.; Taddesse, A.M.; Kebede, T.; Teju, E.; Diaz, I.: Fe–Al–Mn ternary oxide nanosorbent: synthesis, characterization and phosphate sorption property. J. Environ. Chem. Eng. 5, 1330–1340 (2017).  https://doi.org/10.1016/j.jece.2017.02.026 CrossRefGoogle Scholar
  54. 54.
    Fu, Y.; Wei, Q.; Wang, X.; Shu, H.: Porous hollow α-Fe2O3@TiO2 core–shell nanospheres for superior lithium/sodium storage capability. J. Mater. Chem. A Mater. Energy Sustain. 3, 13807–13818 (2015).  https://doi.org/10.1039/C5TA02994E CrossRefGoogle Scholar
  55. 55.
    Saha, N.; Sarkar, A.; Ghosh, A.B.; Dutta, A.K.; Bhadu, G.R.; Paul, P.; Adhikary, B.: Highly active spherical amorphous MoS 2: facile synthesis and application in photocatalytic degradation of rose bengal dye and hydrogenation of nitroarenes. RSC Adv. 5, 88848–88856 (2015).  https://doi.org/10.1039/C5RA19442C CrossRefGoogle Scholar
  56. 56.
    Bayram, K.; Gedik, N.; Selin, P.; Serhan, A.: Band gap engineering and modifying surface of TiO2 nanostructures by Fe2O3 for enhanced-performance of dye sensitized solar cell. Mat. Sci. Semicon. Proc. 31, 363–371 (2015).  https://doi.org/10.1016/j.mssp.2014.12.020 CrossRefGoogle Scholar
  57. 57.
    Subramonian, W.; Wu, T.Y.; Chai, S.: Using one-step facile and solvent-free mechanochemical process to synthesize photoactive Fe2O3–TiO2 for treating industrial wastewater. J. Alloys Compd. 695, 496–507 (2017).  https://doi.org/10.1016/j.jallcom.2016.10.006 CrossRefGoogle Scholar
  58. 58.
    Jamalluddin, N.A.; Abdullah, A.Z.: Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: effect of Fe(III) loading and calcination temperature. Ultrason. Sonochem. 18, 669–678 (2011).  https://doi.org/10.1016/j.ultsonch.2010.09.004 CrossRefGoogle Scholar
  59. 59.
    Boehm, H.P.: Chemical identification of surface groups. Adv. Catal. 16, 179–274 (1966).  https://doi.org/10.1016/s0360-0564(08)60354-5 CrossRefGoogle Scholar
  60. 60.
    Bendjabeur, S.; Zouaghi, R.; Kaabeche, O.N.H.; Sehili, T.: Parameters affecting adsorption and photocatalytic degradation behavior of gentian violet under UV irradiation with several kinds of TiO2 as a photocatalyst. J. Chem. React. Eng, Int (2017).  https://doi.org/10.1515/ijcre-2016-0206 CrossRefGoogle Scholar
  61. 61.
    Ohtani, B.: Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C: Photochem Rev. 11, 157–178 (2010).  https://doi.org/10.1016/j.jphotochemrev.2011.02.001 CrossRefGoogle Scholar
  62. 62.
    Alipanahpour, E.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.: Ultrasonics sonochemistry application of modificated magnetic nanomaterial for optimization of ultrasound-enhanced removal of Pb2+ ions from aqueous solution under experimental design: investigation of kinetic and isotherm. Ultrason. Sonochem. 36, 409–419 (2017).  https://doi.org/10.1016/j.ultsonch.2016.12.016 CrossRefGoogle Scholar
  63. 63.
    Yang, H.; Masse, S.; Rouelle, M.; Aubry, E.; Li, Y.; Roux, C.; Journaux, Y.; Li, L.; Coradin, T.: Magnetically recoverable iron oxide–hydroxyapatite nanocomposites for lead removal. Int. J. Environ. Sci. Technol. 12, 1173–1182 (2015).  https://doi.org/10.1007/s13762-014-0514-2 CrossRefGoogle Scholar
  64. 64.
    Mendiola-Alvarez, S.Y.; Hernández-Ramírez, A.; Guzmán-Mar, J.L.; Maya-Treviño, M.L.; Caballero-Quintero, A.; Hinojosa-Reyes, L.: A novel P-doped Fe2O3–TiO2 mixed oxide: Synthesis, characterization and photocatalytic activity under visible radiation. Today, Catal (2019).  https://doi.org/10.1016/j.cattod.2019.01.004 CrossRefGoogle Scholar
  65. 65.
    Fu, H.; Sun, S.; Yang, X.; Li, W.; An, X.; Zhang, H.; Dong, Y.: A facile coating method to construct uniform porous α-Fe2O3 @ TiO2 core–shell nanostructures with enhanced solar light photocatalytic activity. Powder Technol. 328, 389–396 (2018).  https://doi.org/10.1016/j.powtec.2018.01.067 CrossRefGoogle Scholar
  66. 66.
    Sui, Y.; Liu, Q.; Jiang, T.; Guo, Y.: Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings. Appl. Surf. Sci. 428, 1149–1158 (2018).  https://doi.org/10.1016/j.apsusc.2017.09.197 CrossRefGoogle Scholar
  67. 67.
    Baniamerian, H.; Safavi, M.; Alvarado-Morales, M.; Tsapekos, P.; Angelidaki, I.; Shokrollahzadeh, S.: Photocatalytic inactivation of vibrio fischeri using Fe2O3–TiO2-based nanoparticles. Environ. Res. 166, 497–506 (2018).  https://doi.org/10.1016/j.envres.2018.06.011 CrossRefGoogle Scholar
  68. 68.
    Cheng, L.; Qiu, S.; Chen, J.; Shao, J.; Cao, S.: A practical pathway for the preparation of Fe2O3 decorated TiO2 photocatalyst with enhanced visible-light photoactivity. Mater. Chem. Phys. J. 190, 53–61 (2017).  https://doi.org/10.1016/j.matchemphys.2017.01.001 CrossRefGoogle Scholar
  69. 69.
    Subramonian, W.; Wu, T.Y.; Chai, S.: Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3–TiO2: treatment efficiency and characterizations of reused photocatalyst. J. Environ. Manage. 187, 298–310 (2017).  https://doi.org/10.1016/j.jenvman.2016.10.024 CrossRefGoogle Scholar
  70. 70.
    Abdel-Wahab, A.-M.; Al-Shirbini, A.-S.; Mohamed, O.; Nasr, O.: Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core–shell nanostructures. J. Photochem. Photobiol. A Chem. 347, 186–198 (2017).  https://doi.org/10.1016/j.jphotochem.2017.07.030 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2020

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of Applied Natural SciencesAdama Science and Technology UniversityAdamaEthiopia

Personalised recommendations