Application of Desirability Approach to Optimize the Control Factors in Cryogenic Diamond Burnishing

  • B. SachinEmail author
  • S. Narendranath
  • D. Chakradhar
Research Article-Mechanical Engineering


Cryogenic diamond burnishing is an impactful method to enhance the functional performance of the product. In this article, an experimental study on the diamond burnishing of 17-4 precipitation hardenable stainless steel in a cryogenic cooling condition has been presented. This material has excellent corrosion resistance, high strength and enormous applications in the manufacturing industries. The control variables were namely burnishing force, burnishing feed and burnishing force have been studied and modeled for the output responses explicitly surface hardness and surface roughness. The influence of control variables on performance features has been analyzed using response surface graphs. The significant influence of burnishing conditions on the output responses was established by analysis of variance. Desirability function approach has been employed to optimize the multi-performance characteristics. At the corresponding highest desirability, the optimal process parameter combination was found to be burnishing feed = 0.053 mm/rev, burnishing speed = 31.29 m/min and burnishing force = 200 N which yields a minimum surface roughness = 0.199 µm and maximum surface hardness = 397.48 HV. The maximum percentage of error among the predicted and experimental results was found to be 10% and 2%, respectively, for surface roughness and surface hardness. The investigational findings were observed to be in agreement with the predicted value with permissible deviation.


Response surface methodology (RSM) Cryogenic diamond burnishing ANOVA Surface roughness Desirability function approach (DFA) 


  1. 1.
    Maximov, J.T.; Anchev, A.P.; Duncheva, G.V.; Ganev, N.; Selimov, K.F.: Influence of the process parameters on the surface roughness, micro-hardness, and residual stresses in slide burnishing of high-strength aluminum alloys. J. Braz. Soc. Mech. Sci. Eng. 39(8), 3067–3078 (2016). CrossRefGoogle Scholar
  2. 2.
    Sachin, B.; Narendranath, S.; Chakradhar, D.: Effect of cryogenic diamond burnishing on residual stress and microhardness of 17-4 PH stainless steel. Mater. Today Proc. 5, 18393–18399 (2018). CrossRefGoogle Scholar
  3. 3.
    Ma, J.; Atabaki, M.M.; Liu, W.; Pillai, R.; Kumar, B.; Vasudevan, U.; Kovacevic, R.: Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar. Opt. Laser Technol. 82, 38–52 (2016). CrossRefGoogle Scholar
  4. 4.
    Mukhopadhyay, S.; Das, S.; Mukhopadhyay, G.; Bhattacharyya, S.; Palit, P.: Improving the property of a water box nozzle made of 17-4PH steel by suitable heat treatment. Eng. Fail. Anal. 49, 137–140 (2015). CrossRefGoogle Scholar
  5. 5.
    Yildiz, Y.; Nalbant, M.: A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 48, 947–964 (2008). CrossRefGoogle Scholar
  6. 6.
    Hong, S.Y.; Zhao, Z.: Thermal aspects, material considerations and cooling strategies in cryogenic machining. Clean Technol. Environ. Policy 1, 107–116 (1999). CrossRefGoogle Scholar
  7. 7.
    Korzynski, M.; Dudek, K.; Palczak, A.; Kruczek, B.; Kocurek, P.: Experimental models and correlations between surface parameters after slide diamond burnishing. Meas. Sci. Rev. 18, 123–129 (2018). CrossRefGoogle Scholar
  8. 8.
    Toboła, D.; Kania, B.: Phase composition and stress state in the surface layers of burnished and gas nitrided Sverker 21 and Vanadis 6 tool steels. Surf. Coat. Technol. 353, 105–115 (2018). CrossRefGoogle Scholar
  9. 9.
    Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Dunchev, V.P.: Crack resistance enhancement of joint bar holes by slide diamond burnishing using new tool equipment. Int. J. Adv. Manuf. Technol. (2019). CrossRefGoogle Scholar
  10. 10.
    Okada, M.; Shinya, M.; Matsubara, H.; Kozuka, H.; Tachiya, H.; Asakawa, N.; Otsu, M.: Development and characterization of diamond tip burnishing with a rotary tool. J. Mater. Process. Technol. 244, 106–115 (2017). CrossRefGoogle Scholar
  11. 11.
    Świrad, S.: The surface texture analysis after sliding burnishing with cylindrical elements. Wear 271, 576–581 (2011). CrossRefGoogle Scholar
  12. 12.
    Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Ganev, N.; Amudjev, I.M.; Dunchev, V.P.: Effect of slide burnishing method on the surface integrity of AISI 316Ti chromium–nickel steel. J. Braz. Soc. Mech. Sci. Eng. 40, 194 (2018). CrossRefGoogle Scholar
  13. 13.
    Korzynski, M.; Lubas, J.; Swirad, S.; Dudek, K.: Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. J. Mater. Process. Technol. 211, 84–94 (2011). CrossRefGoogle Scholar
  14. 14.
    Sachin, B.; Narendranath, S.; Chakradhar, D.: Experimental evaluation of diamond burnishing for sustainable manufacturing. Mater. Res. Express 5, 106514 (2018). CrossRefGoogle Scholar
  15. 15.
    Rao, C.M.; Rao, S.S.; Herbert, M.A.: Development of novel cutting tool with a micro-hole pattern on PCD insert in machining of titanium alloy. J. Manuf. Process. 36, 93–103 (2018). CrossRefGoogle Scholar
  16. 16.
    Yang, S.; Umbrello, D.; Dillon, O.W.; Puleo, D.A.; Jawahir, I.S.: Cryogenic cooling effect on surface and subsurface microstructural modifications in burnishing of Co–Cr–Mo biomaterial. J. Mater. Process. Technol. 217, 211–221 (2015). CrossRefGoogle Scholar
  17. 17.
    Caudill, J.; Schoop, J.; Jawahir, I.S.: Correlation of surface integrity with processing parameters and advanced interface cooling/lubrication in burnishing of Ti–6Al–4V alloy. Adv. Mater. Process. Technol. 0698, 1–14 (2018). CrossRefGoogle Scholar
  18. 18.
    Tang, J.; Luo, H.Y.; Zhang, Y.B.: Enhancing the surface integrity and corrosion resistance of Ti–6Al–4V titanium alloy through cryogenic burnishing. Int. J. Adv. Manuf. Technol. (2016). CrossRefGoogle Scholar
  19. 19.
    Pu, Z.; Yang, S.; Song, G.L.; Dillon, O.W.; Puleo, D.A.; Jawahir, I.S.: Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scr. Mater. 65, 520–523 (2011). CrossRefGoogle Scholar
  20. 20.
    Li, J.; Ma, C.; Ma, Y.; Li, Y.; Zhou, W.; Xu, P.: Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Appl. Microbiol. Biotechnol. 74, 563–571 (2007). CrossRefGoogle Scholar
  21. 21.
    Kıvak, T.: Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement 50, 19–28 (2014)CrossRefGoogle Scholar
  22. 22.
    Çiçek, A.; Kıvak, T.; Ekici, E.: Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills. J. Intell. Manuf. 26(2), 295–305 (2015)CrossRefGoogle Scholar
  23. 23.
    Kıvak, T.; Samtaş, G.; Çiçek, A.: Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. Measurement 45(6), 1547–1557 (2012)CrossRefGoogle Scholar
  24. 24.
    Noshad, M.; Mohebbi, M.; Shahidi, F.; Mortazavi, S.A.: Multi-objective optimization of osmotic-ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food Bioprocess. Technol. 5, 2098–2110 (2012). CrossRefGoogle Scholar
  25. 25.
    Seeman, M.; Ganesan, G.; Karthikeyan, R.; Velayudham, A.: Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int. J. Adv. Manuf. Technol. 48, 613–624 (2010). CrossRefGoogle Scholar
  26. 26.
    Sagbas, A.: Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function. Adv. Eng. Softw. 42, 992–998 (2011). CrossRefGoogle Scholar
  27. 27.
    El-Axir, M.H.; Othman, O.M.; Abodiena, A.M.: Study on the inner surface finishing of aluminum alloy 2014 by ball burnishing process. J. Mater. Process. Technol. 202, 435–442 (2008). CrossRefGoogle Scholar
  28. 28.
    John, M.R.S.; Balaji, B.; Vinayagam, B.K.: Optimisation of internal roller burnishing process in CNC machining center using response surface methodology. J. Braz. Soc. Mech. Sci. Eng. 39, 4045–4057 (2017). CrossRefGoogle Scholar
  29. 29.
    El-Axir, M.H.: Investigation into roller burnishing. Int. J. Mach. Tools Manuf. 40, 1603–1617 (2000). CrossRefGoogle Scholar
  30. 30.
    Nguyen, T.; Le, X.: Optimization of interior roller burnishing process for improving surface quality. Mater. Manuf. Process. 33, 1233–1241 (2018). CrossRefGoogle Scholar
  31. 31.
    Amdouni, H.; Bouzaiene, H.; Montagne, A.; Nasri, M.; Iost, A.: Modeling and optimization of a ball-burnished aluminum alloy flat surface with a crossed strategy based on response surface methodology. Int. J. Adv. Manuf. Technol. 88, 801–814 (2017). CrossRefGoogle Scholar
  32. 32.
    Sachin, B.; Narendranath, S.; Chakradhar, D.: Effect of working parameters on the surface integrity in cryogenic diamond burnishing of 17-4 PH stainless steel with a novel diamond burnishing tool. J. Manuf. Process. 38, 564–571 (2019). CrossRefGoogle Scholar
  33. 33.
    Kansal, H.K.; Singh, S.; Kumar, P.: Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J. Mater. Process. Technol. 169, 427–436 (2005). CrossRefGoogle Scholar
  34. 34.
    Hassan, A.M.: The effects of ball- and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. J. Mater. Process. Technol. 72, 385–391 (1997). CrossRefGoogle Scholar
  35. 35.
    Sachin, B.; Narendranath, S.; Chakradhar, D.: Sustainable diamond burnishing of 17-4 PH stainless steel for enhanced surface integrity and product performance by using a novel modified tool. Mater. Res. Express 6(4), 046501 (2019). CrossRefGoogle Scholar
  36. 36.
    Lyons, A.C.; Ne, M.: An investigation of the surface topography of ball burnished mild steel and aluminium. Int. J. Adv. Manuf. Technol. 16, 469–473 (2000). CrossRefGoogle Scholar
  37. 37.
    El-Taweel, T.A.; El-Axir, M.H.: Analysis and optimization of the ball burnishing process through the Taguchi technique. Int. J. Adv. Manuf. Technol. 41, 301–310 (2009). CrossRefGoogle Scholar
  38. 38.
    Hassan, A.M.; Al-Bsharat, A.S.: Influence of burnishing process on surface roughness, hardness, and microstructure of some non-ferrous metals. Wear 199, 1–8 (1996). CrossRefGoogle Scholar
  39. 39.
    Sachin, B.; Narendranath, S.; Chakradhar, D.: Selection of optimal process parameters in sustainable diamond burnishing of 17-4 PH stainless steel. J. Braz. Soc. Mech. Sci. 41, 219 (2019). CrossRefGoogle Scholar
  40. 40.
    Sachin, B.; Narendranath, S.; Chakradhar, D.: Enhancement of surface integrity by cryogenic diamond burnishing toward the improved functional performance of the components. J Braz. Soc. Mech. Sci. Eng. 41, 396 (2019). CrossRefGoogle Scholar
  41. 41.
    Sachin, B.; Narendranath, S.; Chakradhar, D.: Analysis of surface hardness and surface roughness in diamond burnishing of 17-4 PH stainless steel. IOP Conf. Ser. Mater. Sci. Eng. 577(1), 012075 (2019)CrossRefGoogle Scholar
  42. 42.
    Rao, C.M.; Rao, S.S.; Herbert, M.A.: An experimental and numerical approach to study the performance of modified perforated cutting tools on machining of Ti–6Al–4V alloy. Arab. J. Sci. Eng. (2019). CrossRefGoogle Scholar
  43. 43.
    Kumar, V.; Kumar, V.; Kumar, K.: An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach. J. Ind. Eng. 11(3), 297–307 (2015). CrossRefGoogle Scholar
  44. 44.
    Ambalal, K.; Pragnesh, P.; Brahmbhatt, K.: Response surface methodology based desirability approach for optimization of roller burnishing process parameter. J. Inst. Eng. Ser. C 99(6), 729–736 (2017). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNitte Meenakshi Institute of TechnologyBengaluruIndia
  2. 2.Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkalIndia
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology PalakkadPalakkadIndia

Personalised recommendations