Advertisement

Experimental Investigations and Prediction of Thermal Behaviour of Ferrosialate-Based Geopolymer Mortars

  • Bharath Simha Reddy Yeddula
  • S. KarthiyainiEmail author
Research Article - Civil Engineering
  • 44 Downloads

Abstract

This paper studies the thermal behaviour of ferrosialate geopolymer mortars. This is done by monitoring various factors influencing the strength gain/loss, weight loss, enthalpy changes, physical and chemical transformations in the ferrosialate geopolymer structure using TG/DT analysis. This study proposed a novel predictive equation for estimating this parameter with the help of gene expression programming (GEP). Fly ash is used as a raw feed for sialate geopolymer, and red mud along with fly ash is used for ferrosialate geopolymer. Till 200 °C, oven-cured samples showed maximum strength results. Whereas in later stages, i.e. after exposure to 400 °C, ambient cured samples surpassed the former by 4.14%. Development of broad amorphous hump in the XRD patterns, presence of thicker geopolymer structure in the SEM images for 400 °C samples, an exothermic peak in the DTA curves at 400 °C and increment in the compressive strength up to 400 °C exposure, all pointing to a conclusion that elevated temperature-favoured ferrosialate geopolymer formation till 400 °C. After exposure to 800 °C, maximum strength loss of 68.57% and 30.3% is observed for sialate and ferrosialate samples dehydroxylation, recrystallization, and melting of unreacted particles are the reasons for diminishing the strength at elevated temperatures. An equation using GEP model (r2 = 0.913) having nine genes is proposed that can predict the residual compressive strength of ferrosialate geopolymer mortars. Though this model is for ferrosialate geopolymer, a similar technique can be easily adapted to other types of geopolymers.

Keywords

Ferrosialate Prediction Geopolymer Red mud Thermal behaviour TGA 

Abbreviations

TGA

Thermogravimetric analysis

DTA

Differential thermal analysis

A28

28-day ambient curing

H72

72-h oven curing

GEP

Gene expression programming

SEM

Scanning electron microscope

XRD

X-ray diffraction

Q

Quartz

N

Nepheline

M

Mullite

H

Haematite

RM

Red mud

IS

Indian standards

Mol.

Molarity of NaOH solution

Notes

Acknowledgements

Authors would like to thank School of Bioscience and Engineering, VIT Vellore for giving access to SEM facility. Authors would also like to thank Hindalco, Belgaum for providing red mud.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13369_2019_4314_MOESM1_ESM.xlsx (19 kb)
Supplementary material 1 (XLSX 18 kb)
13369_2019_4314_MOESM2_ESM.xlsx (38 kb)
Supplementary material 2 (XLSX 37 kb)

References

  1. 1.
    Malhotra, V.M.: Introduction: sustainable development and technology concrete technology. Concr. Int. 24, 2002 (2002)Google Scholar
  2. 2.
    Banik, N.; Koesoemadinata, A.; Wagner, C.; Inyang, C.; Bui, H.: Predrill pore-pressure prediction directly from seismically derived acoustic impedance. In: Society of Exploration Geophysicists International Exposition 83rd Annual Meetting SEG 2013 Expand. Geophys. Front., vol. 35, pp. 2905–2909 (2013).  https://doi.org/10.1190/segam2013-0137.1
  3. 3.
    Ng, C.; Alengaram, U.J.; Wong, L.S.; Mo, K.H.; Jumaat, M.Z.; Ramesh, S.: A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr. Build. Mater. 186, 550–576 (2018).  https://doi.org/10.1016/j.conbuildmat.2018.07.075 CrossRefGoogle Scholar
  4. 4.
    Revathi, T.; Jeyalakshmi, R.; Rajamane, N.P.: Study on the role of n-SiO2 incorporation in thermo-mechanical and microstructural properties of ambient cured FA-GGBS geopolymer matrix. Appl. Surf. Sci. 449, 322–331 (2018).  https://doi.org/10.1016/j.apsusc.2018.01.281 CrossRefGoogle Scholar
  5. 5.
    Davidovits, J.: Global warming impact on the cement and aggregates industries. World Resour. Rev. 6, 263–278 (1994)Google Scholar
  6. 6.
    Xu, H.; Van Deventer, J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59, 247–266 (2000).  https://doi.org/10.1016/S0301-7516(99)00074-5 CrossRefGoogle Scholar
  7. 7.
    Hardjito, D.; Rangan, B.V.: Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Curtin University of Technology, Perth (2005)Google Scholar
  8. 8.
    Wan, Q.; Rao, F.; Song, S.; León-Patiño, C.A.: Geothermal clay-based geopolymer binders: synthesis and microstructural characterization. Appl. Clay Sci. 146, 223–229 (2017).  https://doi.org/10.1016/j.clay.2017.05.047 CrossRefGoogle Scholar
  9. 9.
    Yang, T.; Han, E.; Wang, X.; Wu, D.: Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers. Appl. Surf. Sci. 416, 200–212 (2017).  https://doi.org/10.1016/j.apsusc.2017.04.166 CrossRefGoogle Scholar
  10. 10.
    Davidovits, M.; Davidovits, F.; Davidovits, R.: Cimento Geopolimero do tipo ferro-sialato. Patent No. WO 2012/056125 Al (2012)Google Scholar
  11. 11.
    Kumar, S.; Kumar, R.: Synergising red (MUD) and grey (ash) for greener geopolymers. In: Bauxite Residue Valorisation and Best Practices. pp. 273–280. Leuven (2004)Google Scholar
  12. 12.
    Klauber, C.; Gräfe, M.: Power G (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108, 11–32 (2011).  https://doi.org/10.1016/j.hydromet.2011.02.007 CrossRefGoogle Scholar
  13. 13.
    Singh, S.; Aswath, M.U.; Ranganath, R.V.: Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr. Build. Mater. 177, 91–101 (2018).  https://doi.org/10.1016/j.conbuildmat.2018.05.096 CrossRefGoogle Scholar
  14. 14.
    Brunori, C.; Cremisini, C.; Massanisso, P.; Pinto, V.; Torricelli, L.: Reuse of a treated red mud bauxite waste: studies on environmental compatibility. J. Hazard. Mater. 117, 55–63 (2005).  https://doi.org/10.1016/j.jhazmat.2004.09.010 CrossRefGoogle Scholar
  15. 15.
    Patel, S.; Pal, B.K.: Current status of an industrial waste: red mud an overview. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 4, 1–16 (2015)Google Scholar
  16. 16.
    Hu, Y.; Liang, S.; Yang, J.; Chen, Y.; Ye, N.; Ke, Y.; Tao, S.; Xiao, K.; Hu, J.; Hou, H.; Fan, W.; Zhu, S.; Zhang, Y.; Xiao, B.: Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr. Build. Mater. 200, 398–407 (2019).  https://doi.org/10.1016/j.conbuildmat.2018.12.122 CrossRefGoogle Scholar
  17. 17.
    Xin, J.; Huang, C.: Fire risk analysis of residential buildings based on scenario clusters and its application in fire risk management. Fire Saf. J. 62, 72–78 (2013).  https://doi.org/10.1016/j.firesaf.2013.09.022 CrossRefGoogle Scholar
  18. 18.
    Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F.: Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 109, 17–24 (2016).  https://doi.org/10.1016/j.conbuildmat.2016.01.043 CrossRefGoogle Scholar
  19. 19.
    Rashad, A.M.; Zeedan, S.R.: The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr. Build. Mater. 25, 3098–3107 (2011).  https://doi.org/10.1016/j.conbuildmat.2010.12.044 CrossRefGoogle Scholar
  20. 20.
    Hosan, A.; Haque, S.; Shaikh, F.: Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: a comparative study. J. Build. Eng. 8, 123–130 (2016).  https://doi.org/10.1016/j.jobe.2016.10.005 CrossRefGoogle Scholar
  21. 21.
    Bakharev, T.: Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 36, 1134–1147 (2006).  https://doi.org/10.1016/j.cemconres.2006.03.022 CrossRefGoogle Scholar
  22. 22.
    Kong, D.L.Y.; Sanjayan, J.G.: Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 30, 986–991 (2008).  https://doi.org/10.1016/j.cemconcomp.2008.08.001 CrossRefGoogle Scholar
  23. 23.
    Kayadelen, C.; Günaydin, O.; Fener, M.; Demir, A.; Özvan, A.: Modeling of the angle of shearing resistance of soils using soft computing systems. Exp. Syst. Appl. 36, 11814–11826 (2009).  https://doi.org/10.1016/j.eswa.2009.04.008 CrossRefGoogle Scholar
  24. 24.
    Abbas, H.; Al-Salloum, Y.A.; Elsanadedy, H.M.; Almusallam, T.H.: ANN models for prediction of residual strength of HSC after exposure to elevated temperature. Fire Saf. J. 106, 13–28 (2019).  https://doi.org/10.1016/j.firesaf.2019.03.011 CrossRefGoogle Scholar
  25. 25.
    Mousavi, S.M.; Aminian, P.; Gandomi, A.H.; Alavi, A.H.; Bolandi, H.: A new predictive model for compressive strength of HPC using gene expression programming. Adv. Eng. Softw. 45, 105–114 (2012).  https://doi.org/10.1016/j.advengsoft.2011.09.014 CrossRefGoogle Scholar
  26. 26.
    Gandomi, A.H.; Alavi, A.H.: Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf. Sci. (Ny) 181, 5227–5239 (2011).  https://doi.org/10.1016/j.ins.2011.07.026 CrossRefGoogle Scholar
  27. 27.
    Ferreira, C.: Gene Expression Programming Mathematical Modeling by an Artificial Intelligence, p. 478. Springer, Berlin (2006)zbMATHGoogle Scholar
  28. 28.
    Jafari, S.; Mahini, S.S.: Lightweight concrete design using gene expression programing. Constr. Build. Mater. 139, 93–100 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.01.120 CrossRefGoogle Scholar
  29. 29.
    Gholampour, A.; Gandomi, A.H.; Ozbakkaloglu, T.: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Constr. Build. Mater. 130, 122–145 (2017).  https://doi.org/10.1016/j.conbuildmat.2016.10.114 CrossRefGoogle Scholar
  30. 30.
    American Concrete Institute The Masonry Society: Aci 216.1-07/Tms-0216-07 (2007)Google Scholar
  31. 31.
    Cen: BS EN 1992-1-2:2004—Eurocode 2 (2004)Google Scholar
  32. 32.
    Kong, D.L.Y.; Sanjayan, J.G.: Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 40, 334–339 (2010).  https://doi.org/10.1016/j.cemconres.2009.10.017 CrossRefGoogle Scholar
  33. 33.
    Nazari, A.; Bagheri, A.; Sanjayan, J.G.; Dao, M.; Mallawa, C.; Zannis, P.; Zumbo, S.: Thermal shock reactions of ordinary Portland cement and geopolymer concrete: microstructural and mechanical investigation. Constr. Build. Mater. 196, 492–498 (2019).  https://doi.org/10.1016/j.conbuildmat.2018.11.098 CrossRefGoogle Scholar
  34. 34.
    IS:650–1991: IS 650: Specification for Standard Sand for Testing of Cement, p. 1991. Bureau of Indian Standards, Delhi (1991)Google Scholar
  35. 35.
    Indian Standard IS : 4031 (Part 6)—1988 (Reaffirmed 2005): Indian Standard IS : 4031 (Part 6)—1988 (Reaffirmed 2005). Methods Phys. Tests Hydroulic Cem. 4031, pp. 1–3 (2005)Google Scholar
  36. 36.
    Nazari, A.; Bagheri, A.; Dao, M.; Mallawa, C.; Zannis, P.; Zumbo, S.; Sanjayan, J.G.: The behaviour of iron in geopolymer under thermal shock. Constr. Build. Mater. 150, 248–251 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.05.223 CrossRefGoogle Scholar
  37. 37.
    Sivasakthi, M.; Jeyalakshmi, R.; Rajamane, N.P.; Jose, R.: Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites. J. Non Cryst. Solids 499, 117–130 (2018).  https://doi.org/10.1016/j.jnoncrysol.2018.07.027 CrossRefGoogle Scholar
  38. 38.
    Liang, G.; Zhu, H.; Zhang, Z.; Wu, Q.: Effect of rice husk ash addition on the compressive strength and thermal stability of metakaolin based geopolymer. Constr. Build. Mater. 222, 872–881 (2019).  https://doi.org/10.1016/j.conbuildmat.2019.06.200 CrossRefGoogle Scholar
  39. 39.
    Sumajouw, D.M.J.; Hardjito, D.; Wallah, S.E.; Rangan, B.V.: Fly Ash-Based Geopolymer Concrete: Study of Slender Reinforced Columns. Springer, Perth (2007)Google Scholar
  40. 40.
    Choo, H.; Lim, S.; Lee, W.; Lee, C.: Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Constr. Build. Mater. 125, 21–28 (2016).  https://doi.org/10.1016/j.conbuildmat.2016.08.015 CrossRefGoogle Scholar
  41. 41.
    Sagoe-Crentsil, K.; Weng, L.: Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. J. Mater. Sci. 42, 3007–3014 (2007).  https://doi.org/10.1007/s10853-006-0818-9 CrossRefGoogle Scholar
  42. 42.
    Lemougna, P.N.; Wang, K.T.; Tang, Q.; Cui, X.M.: Synthesis and characterization of low temperature (< 800°C) ceramics from red mud geopolymer precursor. Constr. Build. Mater. 131, 564–573 (2017).  https://doi.org/10.1016/j.conbuildmat.2016.11.108 CrossRefGoogle Scholar
  43. 43.
    He, J.; Zhang, J.; Yu, Y.; Zhang, G.: The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study. Constr. Build. Mater. 30, 80–91 (2012).  https://doi.org/10.1016/j.conbuildmat.2011.12.011 CrossRefGoogle Scholar
  44. 44.
    Rickard, W.D.A.; Kealley, C.S.; Van Riessen, A.: Thermally induced microstructural changes in fly ash geopolymers: experimental results and proposed model. J. Am. Ceram. Soc. 98, 929–939 (2015).  https://doi.org/10.1111/jace.13370 CrossRefGoogle Scholar
  45. 45.
    Lahoti, M.; Tan, K.H.; Yang, E.H.: A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 221, 514–526 (2019).  https://doi.org/10.1016/j.conbuildmat.2019.06.076 CrossRefGoogle Scholar
  46. 46.
    Fan, F.; Liu, Z.; Xu, G.; Peng, H.; Cai, C.S.: Mechanical and thermal properties of fly ash based geopolymers. Constr. Build. Mater. 160, 66–81 (2018).  https://doi.org/10.1016/j.conbuildmat.2017.11.023 CrossRefGoogle Scholar
  47. 47.
    Rickard, W.D.A.; Temuujin, J.; Van Riessen, A.: Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition. J. Non Cryst. Solids 358, 1830–1839 (2012).  https://doi.org/10.1016/j.jnoncrysol.2012.05.032 CrossRefGoogle Scholar
  48. 48.
    Abdulkareem, O.A.; Mustafa Al Bakri, A.M.; Kamarudin, H.; Khairul Nizar, I.; Saif, A.A.: Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr. Build. Mater. 50, 377–387 (2014).  https://doi.org/10.1016/j.conbuildmat.2013.09.047 CrossRefGoogle Scholar
  49. 49.
    Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917–2933 (2007).  https://doi.org/10.1007/s10853-006-0637-z CrossRefGoogle Scholar
  50. 50.
    Allahverdi, A.; Kani, E.N.; Yazdanipour, M.: Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceram. Silik. 55, 68–78 (2011)Google Scholar
  51. 51.
    Luhar, S.; Chaudhary, S.; Luhar, I.: Thermal resistance of fly ash based rubberized geopolymer concrete. J. Build. Eng. 19, 420–428 (2018).  https://doi.org/10.1016/j.jobe.2018.05.025 CrossRefGoogle Scholar
  52. 52.
    Duxson, P.; Lukey, G.C.; van Deventer, J.S.J.: The thermal evolution of metakaolin geopolymers: part 2—phase stability and structural development. J. Non Cryst. Solids 353, 2186–2200 (2007).  https://doi.org/10.1016/j.jnoncrysol.2007.02.050 CrossRefGoogle Scholar
  53. 53.
    Prud’Homme, E.; Michaud, P.; Joussein, E.; Rossignol, S.: Influence of raw materials and potassium and silicon concentrations on the formation of a zeolite phase in a geopolymer network during thermal treatment. J Non Cryst. Solids 358, 1908–1916 (2012).  https://doi.org/10.1016/j.jnoncrysol.2012.05.043 CrossRefGoogle Scholar
  54. 54.
    Wen, N.; Zhao, Y.; Yu, Z.; Liu, M.: A sludge and modified rice husk ash-based geopolymer: synthesis and characterization analysis. J. Clean. Prod. 226, 805–814 (2019).  https://doi.org/10.1016/j.jclepro.2019.04.045 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2020

Authors and Affiliations

  1. 1.School of Mechanical and Building SciencesVellore Institute of TechnologyChennaiIndia

Personalised recommendations