Selective Laser Melting of Single Track on Ti–6Al–4V Powder: Experimentation and Finite Element Analysis

  • Manowar Hussain
  • Pranshul GuptaEmail author
  • P. Kumar
  • A. K. Das
Research Article - Mechanical Engineering


The present work has been carried out to establish finite element analysis (FEA) simulation of selective laser melting (SLM) process and validate through experimental results obtained on the powder bed of Ti6Al4V alloy. Process parameters included variable laser power (60–75 W) and scan speed (200–400 mm/min) along with constant parameter and the laser spot diameter of 0.45 mm. Variation in width and depth of melted track was observed through an optical microscope and was compared with FEA results. A code for a nonlinear transient model was developed in ANSYS parametric design language to simulate the process of SLM. It was observed that both the width and depth of the melt pool decrease at high scan speeds and both dimensions increase with power increase. The FEA code developed shows an average deviation of 4.5% in width and 4.65% in depth from the experimental results. The FEA model can be used to establish parameters to obtain specific dimensions of the melt pool in single line scan and optimize the process of SLM by controlling the width and depth of the melt pool.


Laser Finite element analysis SLM DMLS Beam spot diameter 



Support from IIT (ISM), Dhanbad, is gratefully acknowledged.


  1. 1.
    Welsch, G.; Boyer, R.; Collings, E.W. (eds.): Materials Properties Handbook: Titanium Alloys. ASM International, Materials Park (1993)Google Scholar
  2. 2.
    Matsumoto, M.; Shiomi, M.; Osakada, K.; Abe, F.: Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int. J. Mach. Tools Manuf 42(1), 61–67 (2002)CrossRefGoogle Scholar
  3. 3.
    Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I.: Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 210(12), 1624–1631 (2010)CrossRefGoogle Scholar
  4. 4.
    Hussein, A.; Hao, L.; Yan, C.; Everson, R.: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater. Des. 52, 638–647 (2013)CrossRefGoogle Scholar
  5. 5.
    Kyogoku, H.; Shimizu, Y.; Yoshikawa, K.: Surface morphology of selective laser-melted titanium. In: International Solid Freeform Fabrication Symposium. Austin, Texas, pp. 846–852 (2013)Google Scholar
  6. 6.
    Fu, C.H.; Guo, Y.B.: 3-Dimensional finite element modeling of selective laser melting Ti–6Al–4V Alloy. In: 25th Annual International Solid Freeform Fabrication Symposium, pp. 1129–1144 (2014).Google Scholar
  7. 7.
    Shiomi, M.; Yoshidome, A.; Abe, F.; Osakada, K.: Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders. Int. J. Mach. Tools Manuf 39(2), 237–252 (1999)CrossRefGoogle Scholar
  8. 8.
    Contuzzi, N.; Campanelli, S.L.; Ludovico, A.D.: 3D finite element analysis in the selective laser melting process. Int. J. Simul. Model. 10(3), 113–121 (2011)CrossRefGoogle Scholar
  9. 9.
    Dong, L.; Makradi, A.; Ahzi, S.; Remond, Y.: Three-dimensional transient finite element analysis of the selective laser sintering process. J. Mater. Process. Technol. 209(2), 700–706 (2009)CrossRefGoogle Scholar
  10. 10.
    Rihai, M.; Gollo, M.H.; Kalkhoran, S.N.A.: Experimental and numerical study of heat flux distribution in laser forming of bi-layer sheets. J. Comput. Appl. Res. Mech. Eng. 4, 67–79 (2014)Google Scholar
  11. 11.
    Mandal, V.; Hussain, M.; Kumar, V.; Das, A.K.; Singh, N.K.: Development of reinforced TiN-SS316 metal matrix composite (MMC) using direct Metal laser sintering (DMLS) and its characterization. Mater. Today: Proc. 4(9), 9982–9986 (2017)Google Scholar
  12. 12.
    Azizpour, M.; Ghoreishi, M.; Khorram, A.: Numerical simulation of laser beam welding of Ti6Al4V sheet. J. Comput. Appl. Res. Mech. Eng. 4, 145–154 (2014)Google Scholar
  13. 13.
    Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.H.; Wilthan, B.; Pottlacher, G.: Thermophysical properties of solid and liquid Ti–6Al–4V (TA6V) alloy. Int. J. Thermophys. 27(2), 507–529 (2006)CrossRefGoogle Scholar
  14. 14.
    Popovich, A.; Sufiiarov, V.: Metal powder additive manufacturing. In New Trends in 3D Printing. InTech (2016).Google Scholar
  15. 15.
    Verhaeghe, F.; Craeghs, T.; Heulens, J.; Pandelaers, L.: A pragmatic model for selective laser melting with evaporation. Acta Mater. 57(20), 6006–6012 (2009)CrossRefGoogle Scholar
  16. 16.
    Hussain, M.; Kumar, V.; Mandal, V.; Singh, P.K.; Kumar, P.; Das, A.K.: Development of cBN reinforced Ti6Al4V MMCs through laser sintering and process optimization. Mater. Manuf. Process. 32(14), 1667–1677 (2017)CrossRefGoogle Scholar
  17. 17.
    Kundu, S.; Hussain, M.; Kumar, V.; Kumar, S.; Das, A.K.: Direct metal laser sintering of TiN reinforced Ti6Al4V alloy based metal matrix composite: fabrication and characterization. Int. J. Adv. Manuf. Technol. 97, 1–12 (2018)CrossRefGoogle Scholar
  18. 18.
    Lü, L.; Fuh, J.; Wong, Y.S.: Laser-Induced Materials and Processes for Rapid Prototyping. Springer, Berlin (2013)Google Scholar
  19. 19.
    Kruth, J.P.; Levy, G.; Klocke, F.; Childs, T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56(2), 730–759 (2007)CrossRefGoogle Scholar
  20. 20.
    Gu, D.; Shen, Y.: Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater. Des. 30(8), 2903–2910 (2009)CrossRefGoogle Scholar
  21. 21.
    Hussain, M.; Mandal, V.; Kumar, V.; Das, A.K.; Ghosh, S.K.: Development of TiN particulates reinforced SS316 based metal matrix composite by direct metal laser sintering technique and its characterization. Optics Laser Technol. 97, 46–59 (2017)CrossRefGoogle Scholar
  22. 22.
    Gupta, A.; Hussain, M.; Misra, S.; Das, A.K.; Mandal, A.: Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite. Opt. Lasers Eng. 105, 159–172 (2018)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Manowar Hussain
    • 1
  • Pranshul Gupta
    • 2
    Email author
  • P. Kumar
    • 4
  • A. K. Das
    • 3
  1. 1.Department of Mechanical EngineeringCBITGandipet, HyderabadIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology (ISM)DhanbadIndia
  3. 3.Indian Institute of Technology (ISM) DhanbadDhanbadIndia
  4. 4.S R Engineering CollegeWarangalIndia

Personalised recommendations