Advertisement

Study of Two-Phase Nonlinear Advection Dispersion Model for Displacement Washing of Porous Particles Using OCFE with Lagrangian Basis

  • Shelly AroraEmail author
  • Dereje Alemu Alemar
  • František Potůček
Research Article - Chemical Engineering
  • 8 Downloads

Abstract

A comprehensive diffusion dispersion model has been presented for displacement washing of porous particles. Model equations have been divided into two phases, namely bulk fluid phase and particle phase. Both the phases have been characterized by particle geometry and pore radius of particles. Inter-pore and intra-pore solute concentrations have been related to Langmuir adsorption isotherm. Nonlinear set of model equations has been solved by using the technique of orthogonal collocation on finite elements with Lagrangian basis. Effect of different parameters such as Péclet number, bed porosity and distribution ratio has been shown graphically via breakthrough curves and surface plots. Stability of the numerical technique has been checked by L2 and L norms for different values of parameters. Validity of the model on the laboratory-scale washer has been verified by comparing experimental and model-predicted values. Applicability of the model has also been discussed through industrial parameters.

Keywords

Orthogonal collocation Axial dispersion coefficient Péclet number Bed porosity Pore radius of particles Particle geometry 

List of Symbols

A

Cross-sectional area of drum (m2)

A

Particle geometry

Bi

Biot number \( \left( {\frac{{k_{\text{f}} \beta R}}{{KD_{\text{F}} }}} \right) \)

C

Concentration of bulk fluid (kg/m3)

cav

Average solute concentration (kg/m3)

C0

Initial solute concentration (kg/m3)

C

Dimensionless solute concentration (c/C0)

Q

Inter-particle solute concentration (kg/m3)

Q

Dimensionless inter-particle solute concentration (q/C0)

n

Intra-particle solute concentration (kg/m3)

N0

Initial intra-particle solute concentration (kg/m3)

N

Dimensionless intra-particle solute concentration (n/N0)

kf

Film resistance mass transfer coefficient (m/s)

k1

Forward rate constant (1/s)

k2

Backward rate constant (1/s)

L

Cake thickness (m)

Pe

Peclet number (uL/DL)

r

Variable pore radius of particles (m)

R

Pore radius of particles (m)

t

Time of washing (s)

u

Interstitial velocity (m/s)

z

Variable cake thickness (m)

Greek Symbols

β

Porosity of particles

ε

Porosity of packed bed

γ

Variable element size

η

Dimensionless pore radius of particles (r/R)

η*

Dimensionless variable

θ

Dimensionless parameter \( \left( {\frac{a(1 - \varepsilon )}{\varepsilon }} \right) \)

τ

Dimensionless time (tDF/R2)

ξ

Dimensionless thickness (z/L)

ψ

Dimensionless parameter (R2u/LDF)

ζ

Dimensionless variable

References

  1. 1.
    Brenner, H.: The diffusion model of longitudinal mixing in beds of finite length-numerical values. Chem. Eng. Sci. 17, 229–243 (1962)CrossRefGoogle Scholar
  2. 2.
    Sherman, W.R.: The movement of a soluble material during the washing of a bed of packed solids. Am. Inst. Chem. Eng. 10(6), 855–860 (1964)CrossRefGoogle Scholar
  3. 3.
    Pellett, G.L.: Longitudinal dispersion, intraparticle diffusion, and liquid-phase mass transfer during flow through multiparticle systems. TAPPI 49(2), 75–82 (1966)Google Scholar
  4. 4.
    Neretnieks, I.: Analysis of some washing experiments of cooked chips. Svensk Papperstidning 15, 819–825 (1972)Google Scholar
  5. 5.
    Edwards, L.; Rydin, S.: Washing of pulps: part 5—a dispersion model for washing of pulp in mill continuous diffusers. Svensk Papperstidning 11, 354–358 (1976)Google Scholar
  6. 6.
    Rasmuson, A.; Neretnieks, I.: Migration of radio nuclides in fissured rock: the influence of micropore diffusion and longitudinal dispersion. J. Geophys. Res. 86(B5), 3749–3758 (1981)CrossRefGoogle Scholar
  7. 7.
    Al-Jabari, M.; Van Heiningen, A.R.P.; Van De Ven, T.G.M.: Modeling the flow and the deposition of fillers in packed bed of pulp fibers. J. Pulp Pap. Sci. 20(9), J249–J253 (1994)Google Scholar
  8. 8.
    Kukreja, V.K.; Ray, A.K.; Singh, V.P.; Rao, N.J.: A mathematical model for pulp washing in different zones of a rotary vacuum filter. Indian Chem. Eng. Sect. A 37(3), 113–124 (1995)Google Scholar
  9. 9.
    Hebert, D.J.: A branching random walk model for diffusion–reaction–convection. Adv. Math. 125, 121–153 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Arora, S.; Dhaliwal, S.S.; Kukreja, V.K.: Simulation of washing of packed bed of porous particles by orthogonal collocation on finite elements. Comput. Chem. Eng. 30(6–7), 1054–1060 (2006)CrossRefGoogle Scholar
  11. 11.
    Arora, S.; Potucek, F.: Modelling of displacement washing of packed bed of fibers. Braz. J. Chem. Eng. 26(2), 385–393 (2009)CrossRefGoogle Scholar
  12. 12.
    Kumar, D.; Kumar, V.; Singh, V.P.: To study the parametric effects on optimality of various feeding sequences of a multi-effect evaporators in paper industry using mathematical modeling and simulation with MATLAB. Int. J. Chem. Biochem. Eng. 3(3), 129–136 (2010)Google Scholar
  13. 13.
    Pablo, A.; Quiros, F.; Rodriguez, A.; Vazquez, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nadukandi, P.; Onate, E.; Garcia, J.: A high resolution petrov-galerkin method for the convection–diffusion–reaction problem. Part II—a multidimensional extension. Comput. Methods Appl. Mech. Eng. 213–216, 327–352 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yang, A.-M.; Cattani, C.; Jafari, H.; Yang, X.-J.: Analytical solutions of the one-dimensional heat equations arising in fractal transient conduction with local fractional derivative. Abstr. Appl. Anal. 2013, 1–5 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Olayiwola, R.O.: Modeling and simulation of combustion fronts in porous media. J. Niger. Math. Soc. 34, 1–10 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Garoosi, F.; Jahanshaloo, L.; Rashidi, M.M.; Badakhsh, A.; Ali, M.E.: Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model. Appl. Math. Comput. 254, 183–203 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Arora, S.; Kaur, I.; Potůček, F.: Modelling of displacement washing of pulp fibers using Hermite collocation method. Braz. J. Chem. Eng. 32(2), 563–575 (2015)CrossRefGoogle Scholar
  19. 19.
    Richard, D.; Núnez, M.L.D.; Schweich, D.: Adsorption of complex phenolic compounds on active charcoal: breakthrough curves. Chem. Eng. J. 158, 213–219 (2010)CrossRefGoogle Scholar
  20. 20.
    Kasten, P.R.; Lapidus, L.; Amundson, N.R.: Mathematics of adsorption in beds. V. Effect of intraparticle diffusion in flow systems in fixed beds. J. Phys. Chem. 56(6), 683–688 (1952)CrossRefGoogle Scholar
  21. 21.
    Rasmuson, A.; Neretnieks, I.: Exact solution of a model for diffusion in particles and longitudinal dispersion in packed beds. Am. Inst. Chem. Eng. 26(4), 686–690 (1980)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Raghvan, N.S.; Ruthven, D.M.: Numerical simulation of a fixed bed adsorption column by the method of orthogonal collocation. Am. Inst. Chem. Eng. 29(6), 922–925 (1983)CrossRefGoogle Scholar
  23. 23.
    Gu, T.; Tsai, G.-J.; Tsao, G.T.: Modeling of Nonlinear Multicomponent Chromatography, Advances in Biochemical Engineering/Biotechnology, vol. 49, pp. 45–71. Springer, Berlin (1993)Google Scholar
  24. 24.
    Potůček, F.: Washing of pulp fiber bed. Collect. Czech Chem. Commun. 62, 626–644 (1997)CrossRefGoogle Scholar
  25. 25.
    Arora, S.; Dhaliwal, S.S.; Kukreja, V.K.: Solution of two point boundary value problems using orthogonal collocation on finite elements. Appl. Math. Comput. 171, 358–370 (2005)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Arora, S.; Kaur, I.: Numerical solution of heat conduction problems using orthogonal collocation on finite elements. J. Niger. Math. Soc. 34, 286–302 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Carey, G.F.; Finlayson, B.A.: Orthogonal collocation on finite elements. Chem. Eng. Sci. 30, 587–596 (1975)CrossRefGoogle Scholar
  28. 28.
    Villadsen, J.; Stewart, W.E.: Solution of boundary value problems by orthogonal collocation. Chem. Eng. Sci. 22, 1483–1501 (1967)CrossRefGoogle Scholar
  29. 29.
    Villadsen, J.; Sorensen, J.P.: Solution of parabolic partial differential equations by a double collocation method. Chem. Eng. Sci. 24, 1337–1349 (1969)CrossRefGoogle Scholar
  30. 30.
    Finlayson, B.A.: Non linear Analysis in Chemical Engineering. McGraw-Hill, New York (1980)Google Scholar
  31. 31.
    Arora, S.; Dhaliwal, S.S.; Kukreja, V.K.: Computationally efficient technique for weight functions and effect of orthogonal polynomials on the average. Appl. Math. Comput. 186, 623–631 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Arora, S.; Dhaliwal, S.S.; Kukreja, V.K.: Convergence of orthogonal collocation on finite elements for parabolic partial differential equations. Indian J. Ind. Appl. Math. 1(2), 63–72 (2009)Google Scholar
  33. 33.
    Lee, P.F.: Optimizing the displacement washing of pads of wood pulp fibers. TAPPI 62(9), 75–78 (1979)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Shelly Arora
    • 1
    Email author
  • Dereje Alemu Alemar
    • 2
  • František Potůček
    • 3
  1. 1.Department of MathematicsPunjabi UniversityPatialaIndia
  2. 2.Department of Mathematics, College of Natural and Computational ScienceJigjiga UniversityJigjigaEthiopia
  3. 3.Department of Wood, Pulp and Paper TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations