Advertisement

Switched-Capacitor-Based Neutral-Point-Clamped Quasi-Switched Boost Multilevel Inverter

  • T. AjaykumarEmail author
  • Nita R. Patne
Research Article - Electrical Engineering
  • 31 Downloads

Abstract

Reliable and efficient inverters are becoming essential in the current scenario of electrical power generation from renewable energy sources. Owing to inherent buck–boost ability and shoot-through immunity, the single-stage inverters are getting solid evaluation as compared to conventional inverters in the present era of renewable energy generation. However, the maximum attainable boosting of the single-stage inverters is limited by means of device stresses and spectral performance. This paper proposes a switched-capacitor-based quasi-switched boost neutral-point-clamped single-stage multilevel inverter. It is able to make desired AC output voltage in a single-stage conversion from a low-level DC voltage engendered by renewable sources such as fuel cell and PV cell. Further, it can attain high voltage gain at reduced voltage stresses on the switches, capacitors and diodes by cascading multiple switched-capacitor cells to quasi-switched boost network. The working principle and steady-state analysis of proposed topology are presented in order to obtain mathematical relation between input and output voltages. The effectiveness of the proposed inverter has been compared with other impedance-source multilevel inverters in terms of voltage gain, boosting capability, voltage stresses and efficiency. The operation of the proposed system is verified by MATLAB simulation. Also, a laboratory prototype is built and tested to verify the theoretical analysis.

Keywords

Multilevel inverter Switched-capacitor Pulse width modulation (PWM) Single-stage conversion 

List of Symbols

\(B\)

Boost factor

\(G\)

Overall voltage gain of the inverter

\(T_{\text{sw}}\)

Switching time period in seconds

\(D\)

Shoot-through (ST) duty ratio

M

Modulation index

\(V_{g}\)

DC input voltage from fuel cell or battery

\(V_{an}\)

Phase voltage w.r.t. DC bus neutral

\(V_{o}\)

Maximum inverter output voltage

\(V_{\text{in}}\), \(V_{{{\text{in}}(max)}}\)

Average and maximum DC-link voltage available at inverter input terminals

VCX, VCX1, VCY, VCY1

Voltage across the capacitors CX, CX1, CY and CY1, respectively

VLX, VLY

Voltage across the inductors LX and LY, respectively

Iin

Average current through DC link

ILX, ILY

Average currents through inductors LX and LY, respectively

iCX, iCY, iCX1, iCY1

Instantaneous currents through the capacitors CX, CY, CX1 and CY1, respectively

References

  1. 1.
    IRENA. Renewable capacity statistics 2019. https://www.irena.org/. Visited on 12 July 2019
  2. 2.
    Rodriguez, J.; Lai, J.S.; Peng, F.Z.: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)CrossRefGoogle Scholar
  3. 3.
    Akagi, H.: Multilevel converters: fundamental circuits and systems. Proc. IEEE 99, 1–18 (2017)Google Scholar
  4. 4.
    Rodriguez, J.; Bernet, S.; Steimer, P.K.; et al.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219–2230 (2009)CrossRefGoogle Scholar
  5. 5.
    Abu-Rub, H.; Holtz, J.; Rodriguez, J.; et al.: Medium voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans. Ind. Electron. 57(8), 2581–2596 (2010)CrossRefGoogle Scholar
  6. 6.
    Maddugari, S.K.; Borghate, V.B.; Karasani, R.R.; et al.: A three-phase nine-level fault tolerant asymmetrical inverter. Arab. J. Sci. Eng. 44, 1779–1790 (2019)CrossRefGoogle Scholar
  7. 7.
    Kumar, B.H.; Lokhande, M.M.; Reddy, K.R.; et al.: An improved space vector pulse width modulation for nine-level asymmetric cascaded H-bridge three-phase inverter. Arab. J. Sci. Eng. 44, 2453–2465 (2019)CrossRefGoogle Scholar
  8. 8.
    Liu, Y.; Abu-Rub, H.; Loh, P.C.; et al.: Z-Source multilevel inverters. In: Impedance Source Power Electronic Converters, pp. 194–224. Wiley, Chichester (2016)Google Scholar
  9. 9.
    Biczel, P.: Power electronic converters in dc micro grid. In: Proceedings of the IEEE Compatibility in Power Electronics, pp. 1–6 (2007)Google Scholar
  10. 10.
    Wu, F.; Li, X.; Feng, F.; et al.: Multi-topology-mode grid connected inverter to improve comprehensive performance of renewable energy source generation system. IEEE Trans. Power Electron. 32(5), 3623–3633 (2017)CrossRefGoogle Scholar
  11. 11.
    Peng, F.Z.: Z-source inverter. IEEE Trans. Ind. Appl. 39(2), 504–510 (2003)CrossRefGoogle Scholar
  12. 12.
    Husev, O.; Blaabjerg, F.; Roncero-Clemente, C.R.; et al.: Comparison of impedance-source networks for two and multilevel buck–boost inverter applications. IEEE Trans. Power Electron. 31(11), 7564–7579 (2016)CrossRefGoogle Scholar
  13. 13.
    Loh, P.C.; Gao, F.; Blaabjerg, F.: Topological and modulation design of three-level Z-source inverters. IEEE Trans. Power Electron. 23(5), 2268–2277 (2008)CrossRefGoogle Scholar
  14. 14.
    Abdelhakim, A.; Blaabjerg, F.; Mattavelli, P.: Modulation schemes of the three phase impedance source inverters—Part I: classification and review. IEEE Trans. Ind. Electron. 65(8), 6309–6320 (2018)CrossRefGoogle Scholar
  15. 15.
    Abdelhakim, A.; Blaabjerg, F.; Mattavelli, P.: Modulation schemes of the three phase impedance source inverters—Part II: comparative assessment. IEEE Trans. Ind. Electron. 65(8), 6321–6332 (2018)CrossRefGoogle Scholar
  16. 16.
    Loh, P.C.; Gao, F.; Blaabjerg, F.; et al.: Pulse-width-modulated Z-source neutral-point-clamped inverter. IEEE Trans. Ind. Appl. 43, 1295–1308 (2007)CrossRefGoogle Scholar
  17. 17.
    Loh, P.C.; Lim, S.W.; Gao, F.; et al.: Three-level Z-source inverters using a single LC impedance network. IEEE Trans. Power Electron. 22(2), 706–711 (2007)CrossRefGoogle Scholar
  18. 18.
    Husev, O.; Roncero, C.C.; Romero-Cadaval, E.; et al.: Single phase three-level neutral-point-clamped quasi-Z-source inverter. IET Power Electron. 8(1), 1–10 (2015)CrossRefGoogle Scholar
  19. 19.
    Anderson, J.; Peng, F.Z.: A class of quasi-z-source inverters. In: Industry Applications Society Annual Meeting, pp. 1–7 (2008)Google Scholar
  20. 20.
    Siwakoti, Y.P.; Peng, F.Z.; Blaabjerg, F.; et al.: Impedance-source networks for electric power conversion part I: a topological review. IEEE Trans. Power Electron. 30(2), 699–716 (2015)CrossRefGoogle Scholar
  21. 21.
    Ellabban, O.; Abu-Rub, H.: Z-Source inverter: topology improvements review. IEEE Ind. Electron. Mag. 10(1), 6–24 (2016)CrossRefGoogle Scholar
  22. 22.
    Sun, D.; Ge, B.; Yan, X.; et al.: Modelling, impedance design, and efficiency analysis of quasi-Z Source module in cascaded multilevel photovoltaic power system. IEEE Trans. Ind. Electron. 61(11), 6108–6117 (2014)CrossRefGoogle Scholar
  23. 23.
    Pires, V.F.; Cordeiro, A.; Foito, D.; et al.: Quasi-Z-source inverter with a T-type converter in normal and failure mode. IEEE Trans. Power Electron. 31(11), 7462–7470 (2016)CrossRefGoogle Scholar
  24. 24.
    Deng, K.; Zheng, J.; Mei, J.: Novel switched-inductor quasi-Z-source inverter. J. Power Electron. 14(1), 11–21 (2014)CrossRefGoogle Scholar
  25. 25.
    Ravindranath, A.; Mishra, S.; Joshi, A.: Analysis and PWM control of switched boost inverter. IEEE Trans. Ind. Electron. 60(12), 5593–5602 (2013)CrossRefGoogle Scholar
  26. 26.
    Nguyen, M.K.; Le, T.V.; Park, S.J.; Lim, Y.C.: A class of quasi switched boost inverters. IEEE Trans. Ind. Electron. 62(3), 1526–1536 (2015)CrossRefGoogle Scholar
  27. 27.
    Sahoo, M.; Keerthipati, S.: A three-level LC-switching-based voltage boost NPC inverter. IEEE Trans. Ind. Electron. 64(4), 2876–2883 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringVNITNagpurIndia

Personalised recommendations