Experimental and Numerical Investigation of Mode I and Mode II Interlaminar Behavior of Ultra-Thin Chopped Carbon Fiber Tape-Reinforced Thermoplastics
- 23 Downloads
Abstract
This manuscript describes an experimental and numerical study conducted to investigate two representative cases of delamination in ultra-thin chopped carbon fiber tape-reinforced thermoplastics (UT-CTT): delamination in a double cantilever beam (DCB, mode I) and delamination in an end-notched flexure (ENF, mode II). In examples of mode I delamination, unstable crack growth resulted in sawtooth-like load–displacement curves after the initial stage of increasing load, while some specimens displaying mode II delamination exhibited stable crack propagation. The crack surfaces of DCB and ENF UT-CTT specimens were observed by a three-dimensional measurement macroscope and a scanning electron microscope. The values of mode I and mode II interlaminar fracture toughness were obtained based on linear elastic fracture mechanics and beam theory in reference to JIS K 7086 standard, respectively. Furthermore, numerical analysis utilizing the surface-based cohesive zone model based on the triangular traction–separation law was used to predict the delamination behavior in UT-CTT. The minimum and maximum values of critical strain energy release rate were used to define the range of load–displacement curves corresponding to unstable crack propagation under mode I, while the parameters including interlaminar shear strength and friction were taken into account for the predictions of delamination propagation under mode II. The numerically predicted load–displacement curves showed good correlation with the theoretical and experimental results. The research provides interlaminar mechanical properties for damage modeling and numerical simulation method to express fracture behaviors of UT-CTT structures.
Keywords
Ultra-thin chopped carbon fiber tape-reinforced thermoplastics (UT-CTT) Double cantilever beam (DCB) test End-notched flexure (ENF) test Delamination Cohesive zone model (CZM)Notes
Acknowledgements
The part of this study was conducted as Japanese METI project “The Future Pioneering Projects/Innovative Structural Materials Project” since 2013fy. Authors would like to express sincerely appreciation to the project members who have provided valuable information and useful discussions.
References
- 1.Wan, Y.; Ohori, T.; Takahashi, J.: Mechanical properties and modeling of discontinuous carbon fiber reinforced thermoplastics. In: Proceedings of the 20th International Conference on Composite materials, Copenhagen, Denmark, 19–24 July (2015)Google Scholar
- 2.LeBlanc, D.; Landry, B.; Levy, A.; et al.: Compression moulding of complex parts using randomly-oriented strands thermoplastic composites. In: Proceedings of the International SAMPE Symposium and Exhibition, Seattle, USA, 2–5 June (2014)Google Scholar
- 3.Selezneva, M.; Lessard, L.: Characterization of mechanical properties of randomly oriented strand thermoplastic composites. J. Compos. Mater. 50(20), 2833–2851 (2016)CrossRefGoogle Scholar
- 4.Selezneva, M.; Roy, S.; Lessard, L.; et al.: Analytical model for prediction of strength and fracture paths characteristic to randomly oriented strand (ROS) composites. Compos. Part B 96(1), 103–111 (2016)CrossRefGoogle Scholar
- 5.Selezneva, M.; Roy, S.; Meldrum, S.; et al.: Modelling of mechanical properties of randomly oriented strand thermoplastic composites. J. Compos. Mater. 51(6), 831–845 (2017)CrossRefGoogle Scholar
- 6.Feraboli, P.; Peitso, E.; Deleo, F.; et al.: Characterization of prepreg-based discontinuous carbon fiber/epoxy systems. J. Reinf. Plast. Compos. 28(10), 1191–1214 (2009)CrossRefGoogle Scholar
- 7.Feraboli, P.; Peitso, E.; Cleveland, T.; et al.: Modulus measurement for prepreg-based discontinuous carbon fiber/epoxy systems. J. Compos. Mater. 43(19), 1947–1965 (2009)CrossRefGoogle Scholar
- 8.Matsuo, T.; Kan, M.; Furukawa, K.; et al.: Numerical modeling and analysis for axial compressive crushing of randomly oriented thermoplastic composite tubes based on the out-of-plane damage mechanism. Compos. Struct. 181, 368–378 (2017)CrossRefGoogle Scholar
- 9.Nasuha, N.; Azmi, A.I.; Tan, C.L.: A review on mode-I interlaminar fracture toughness of fibre reinforced composites. J. Phys. Conf. Ser. 908, 12–24 (2017)CrossRefGoogle Scholar
- 10.De, B.I.; Jacques, S.; Van, P.W.; et al.: Study of the mode I and mode II interlaminar behaviour of a carbon fabric reinforced thermoplastic. Polym. Test. 31(2), 322–332 (2012)CrossRefGoogle Scholar
- 11.Ivanov, S.; Gorbatikh, L.; Lomov, S.: Interlaminar fracture behaviour of textile composites with thermoplastic matrices. In: Proceedings of the 16th European Conference on Composite Materials, Seville, Spain, 22–26 June (2014)Google Scholar
- 12.Ma, Y.; Yang, Y.; Sugahara, T.; et al.: A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Compos. Part B 99, 162–172 (2016)CrossRefGoogle Scholar
- 13.Dikshit, V.; Bhudolia, S.K.; Joshi, S.C.: Multiscale polymer composites: a review of the interlaminar fracture toughness improvement. Fiber 5(4), 38 (2017)CrossRefGoogle Scholar
- 14.Zabala, H.; Aretxabaleta, L.; Castillo, G.; et al.: Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites. Compos. Struct. 121, 75–82 (2015)CrossRefGoogle Scholar
- 15.Miyagawa, H.; Sato, C.; Ikegami, K.: Effect of fiber orientation on mode I fracture toughness of CFRP. J. Appl. Polym. Sci. 115(6), 3295–3302 (2010)CrossRefGoogle Scholar
- 16.Yao, L.; Sun, Y.; Guo, L.; et al.: Fibre bridging effect on the Paris relation of mode I fatigue delamination in composite laminates with different thicknesses. Int. J. Fatigue 103, 196–206 (2017)CrossRefGoogle Scholar
- 17.Yao, L.; Alderliesten, R.; Zhao, M.; et al.: Bridging effect on mode I fatigue delamination behavior in composite laminates. Compos. Part A 63, 103–109 (2014)CrossRefGoogle Scholar
- 18.Farmand-Ashtiani, E.; Cugnoni, J.; Botsis, J.: Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite. Int. J. Solids Struct. 55, 58–65 (2015)CrossRefGoogle Scholar
- 19.Reis, P.N.B.; Ferreira, J.A.M.; Antunes, F.V.; et al.: Initial crack length on the interlaminar fracture of woven carbon/epoxy laminates. Fiber. Polym. 16(4), 894–901 (2015)CrossRefGoogle Scholar
- 20.Wang, W.X.; Nakata, M.; Takao, Y.; et al.: Experimental investigation on test methods for mode II interlaminar fracture testing of carbon fiber reinforced composites. Compos. Part A 40(9), 1447–1455 (2009)CrossRefGoogle Scholar
- 21.Wu, G.; Chen, L.; Liu, L.; et al.: Multiscale carbon fiber graphene oxide reinforcements for silicone resin composites with simultaneously enhanced interfacial strength and antihydrothermal aging behaviors. Polym Compos. 39(10), 3509–3518 (2018)CrossRefGoogle Scholar
- 22.Ma, L.; Meng, L.; Fan, D.; et al.: Interfacial enhancement of carbon fiber composites by generation 1–3 dendritic hexamethylenetetramine functionalization. Appl. Surf. Sci. 296, 61–68 (2014)CrossRefGoogle Scholar
- 23.Wu, G.; Chen, L.; Liu, L.: Direct grafting of octamaleamic acid-polyhedral oligomeric silsesquioxanes onto the surface of carbon fibers and the effects on the interfacial properties and anti-hydrothermal aging behaviors of silicone resin composites. J. Mater. Sci. 52(2), 1057–1070 (2017)CrossRefGoogle Scholar
- 24.Park, K.; Paulino, G.H.; Roesler, J.: Cohesive fracture model for functionally graded fiber reinforced concrete. Cem. Concr. Res. 40(6), 956–965 (2010)CrossRefGoogle Scholar
- 25.Kim, Y.R.; Allen, D.H.; Little, D.N.: Damage-induced modeling of asphalt mixtures through computational micromechanics and cohesive zone fracture. J. Mater. Civ. Eng. 17(5), 477–484 (2005)CrossRefGoogle Scholar
- 26.Kim, H.; Wagoner, M.P.; Buttlar, W.G.: Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model. J. Mater. Civ. Eng. 20(8), 552–563 (2008)CrossRefGoogle Scholar
- 27.Ardalany, M.; Fragiacomo, M.; Moss, P.: Modeling of laminated veneer lumber beams with holes using cohesive elements. J. Struct. Eng. 142(1), 04015102 (2015)CrossRefGoogle Scholar
- 28.Bedon, C.; Fragiacomo, M.: Numerical analysis of timber-to-timber joints and composite beams with inclined self-tapping screws. Compos. Struct. 207, 13–28 (2019)CrossRefGoogle Scholar
- 29.Gong, Y.; Zhao, L.; Zhang, J.; et al.: Delamination propagation criterion including the effect of fiber bridging for mixed-mode I/II delamination in CFRP multidirectional laminates. Compos. Sci. Technol. 151, 302–309 (2017)CrossRefGoogle Scholar
- 30.Ramamurthi, M.; Lee, J.S.; Yang, S.H.; et al.: Delamination characterization of bonded interface in polymer coated steel using surface based cohesive model. Int. J. Precis. Eng. Manuf. 14(10), 1755–1765 (2013)CrossRefGoogle Scholar
- 31.Wang, H.W.; Qin, Q.H.; Ji, H.W.; et al.: Comparison among different modeling techniques of 3D micromechanical modeling of damage in unidirectional composites. Adv. Sci. Lett. 4(2), 400–407 (2011)CrossRefGoogle Scholar
- 32.Jacques, S.; De, B.I.; Van, P.W.: Analysis of the numerical and geometrical parameters influencing the simulation of mode I and mode II delamination growth in unidirectional and textile composites. Appl. Compos. Mater. 22(6), 637–668 (2015)CrossRefGoogle Scholar
- 33.Panettieri, E.; Fanteria, D.; Danzi, F.: A sensitivity study on cohesive elements parameters: Towards their effective use to predict delaminations in low-velocity impacts on composites. Compos. Struct. 137, 130–139 (2016)CrossRefGoogle Scholar
- 34.Yuan, H.; Li, X.: Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models. Eng. Fract. Mech. 126, 1–11 (2014)CrossRefGoogle Scholar
- 35.Liu, P.F.; Gu, Z.P.; Peng, X.Q.; et al.: Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression. Compos. Struct. 131, 975–986 (2015)CrossRefGoogle Scholar
- 36.Campilho, R.; Banea, M.D.; Neto, J.; et al.: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 44, 48–56 (2013)CrossRefGoogle Scholar
- 37.Ridha, M.; Tan, V.B.C.; Tay, T.E.: Traction–separation laws for progressive failure of bonded scarf repair of composite panel. Compos. Struct. 93(4), 1239–1245 (2011)CrossRefGoogle Scholar
- 38.Japanese Standards Association.: JIS K 7086—Testing methods for interlaminar fracture toughness of carbon fibre reinforced plastics (1993)Google Scholar
- 39.Carlsson, L.A.; Gillespie Jr., J.W.: Mode II interlaminar fracture of composites. In: Friedrich, K. (ed.) Application of fracture mechanics to composite materials, pp. 113–157. Elsevier, Amsterdam (1989)CrossRefGoogle Scholar
- 40.Simulia, D.: ABAQUS 6.11 analysis user’s manual, Abaqus (2011)Google Scholar
- 41.Turon, A.; Davila, C.G.; Camanho, P.P.; et al.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)CrossRefGoogle Scholar
- 42.Tanaka, K.: Suzue, M.: Isshiki, S.: et al.: Interfacial and interlaminar shear strength of carbon fiber reinforced polycarbonates made with unidirectional sheets. In: Composite: Advances in Manufacture and Characterisation, pp. 131–139. WIT Transactions on State-of-the-art in Science and Engineering (2015)Google Scholar
- 43.Turon, A.; Camanho, P.P.; Costa, J.; et al.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos. Struct. 92(8), 1857–1864 (2010)CrossRefGoogle Scholar
- 44.Allaer, K.; De, B.I.; Jacques, S.; et al.: Experimental assesment of infrared welded bonds using lapshear, double cantilever beam and end notch flexure tests for a carbon fabric reinforced thermoplastic. In: Proceedings of the 15th International Conference on Experimental Mechanics, Porto, Portugal, 22–27 July (2012)Google Scholar