Advertisement

A Hybrid Intelligent Approach for Solar Photovoltaic Power Forecasting: Impact of Aerosol Data

  • Astitva KumarEmail author
  • M. Rizwan
  • Uma Nangia
Research Article - Electrical Engineering
  • 32 Downloads

Abstract

The penetration of solar photovoltaic (PV) power in distributed generating system is increasing rapidly. The increased level of PV penetration causes various issues like grid stability, reliable power generation and power quality; therefore, it becomes utmost important to forecast the PV power using the meteorological parameters. The proposed model is developed on the basis of meteorological data as input parameters, and the impacts of these parameters have been analyzed with respect to forecasted PV power. The main focus of this research is to explore the performance of optimization-based PV power forecasting models with varying aerosol particles and other meteorological parameters. A newly developed intelligent approach based on grey wolf optimization (GWO) using multilayer perceptron (MLP) has been used to forecast the PV power. The performance of the GWO-based MLP model is evaluated on the basis of statistical indicators such as normalized mean bias error (NMBE), normalized mean absolute error (NMAE), normalized root-mean-square error (NRMSE) and training error. The results of the developed model show the values of NMBE, NMAE and NRMSE as 2.267%, 4.681% and 6.67% respectively. To validate the results, a comparison has been made with particle swarm optimization, Levenberg–Marquardt algorithm and adaptive neuro-fuzzy approach. The performance of the model is found better as compared to other intelligent techniques. The obtained results may be used for demand response applications in smart grid environment.

Keywords

Grey wolf optimization Artificial neural network Solar power forecasting Solar PV Distributed power generation 

References

  1. 1.
    Hosenuzzaman, M.; Rahima, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Maleka, A.B.M.A.; Nahar, A.: Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 41, 284–297 (2015)CrossRefGoogle Scholar
  2. 2.
    Long, H.; Zhang, Z.; Su, Y.: Analysis of daily solar power prediction with data-driven approaches. Appl. Energy 126, 29–37 (2014)CrossRefGoogle Scholar
  3. 3.
    Rizwan, M.; Jamil, M.; Kirmani, S.; Kothari, D.P.: Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters. Energy 70, 685–691 (2014)CrossRefGoogle Scholar
  4. 4.
    Gala, Y.; Fernandez, A.; Díaz, J.; Dorronsoro, J.R.: Hybrid machine learning forecasting of solar radiation values. Neurocomputing 176, 48–59 (2016)CrossRefGoogle Scholar
  5. 5.
    Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerrero, J.; Lightbody, G.: Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renew. Energy 126, 96–106 (2018)CrossRefGoogle Scholar
  6. 6.
    Monfared, H.; Ghasemi, A.; Loni, A.; Marzband, M.: A hybrid price-based demand response program for the residential micro-grid. Energy 185, 274–285 (2019)CrossRefGoogle Scholar
  7. 7.
    Al-Sumaiti, A.; Salama, M.; El-Moursi, M.; Alsumaiti, T.; Marzband, M.: Enabling electricity access: revisiting load models for AC-grid operation—part I. IET Gener. Transm. Distrib. 12, 2563–2571 (2019)CrossRefGoogle Scholar
  8. 8.
    Aryanpur, V.; Atabaki, M.; Marzband, M.; Siano, P.; Ghayoumi, K.: An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector. Renew. Sustain. Energy Rev. 112, 58–74 (2019)CrossRefGoogle Scholar
  9. 9.
    Voyant, C.; Notton, G.; Kalogirou, G.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 107, 569–582 (2017)CrossRefGoogle Scholar
  10. 10.
    Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z.: Photovoltaic and solar power forecasting for smart grid energy management. J. Power Energy Syst. 1, 38–46 (2015)Google Scholar
  11. 11.
    Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F.: Review of photovoltaic power forecasting. Sol. Energy 136, 78–111 (2016)CrossRefGoogle Scholar
  12. 12.
    Chaturvedi, D.K.; Isha: Solar forecasting: a review. Int. J. Comput. Appl. 145, 28–50 (2016)Google Scholar
  13. 13.
    Martinez-Anido, C.B.; Botor, B.; Florita, A.R.; Draxl, C.; Lu, S.; Hamann, H.F.; Hodge, B.M.: The value of day-ahead solar power forecasting improvement. Sol. Energy 129, 192–203 (2016)CrossRefGoogle Scholar
  14. 14.
    Sanusi, Y.K.; Ojo, M.O.: Evaluation of clearness index and diffuse ratio of some locations in South Western, Nigeria using solar radiation data. J. Appl. Phys. 5, 45–51 (2015)Google Scholar
  15. 15.
    Chu, Y.; Urquhart, B.; Gohari, S.M.I.; Pedro, H.T.C.; Kleissl, J.; Coimbra, C.F.M.: Short-term reforecasting of power output from a 48 MWe solar PV plant. Sol. Energy 112, 68–77 (2015)CrossRefGoogle Scholar
  16. 16.
    Lia, X.; Wagner, F.; Peng, W.; Yang, J.; Mauzeralla, D.L.: Reduction of solar photovoltaic resources due to air pollution in China. Proc. Natl. Acad. Sci. 114, 1–6 (2017)CrossRefGoogle Scholar
  17. 17.
    Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N.: Solar irradiation forecasting: state-of-the-art and proposition for future developments for small-scale insular grids. Renew. Sustain. Energy Rev. 27, 65–76 (2013)CrossRefGoogle Scholar
  18. 18.
    De Giorgi, M.G.; Congedo, P.M.; Malvoni, M.: Photovoltaic power forecasting using statistical methods: impact of weather data. IET Sci. Meas. Technol. 8, 90–97 (2014)CrossRefGoogle Scholar
  19. 19.
    Garba, M.B.; Muhammad, A.; Musa, M.; Mohammed, A.G.: Assessing the performance of global solar radiation empirical equations in Sokoto, Nigeria using meteorological parameters. Niger. J. Technol. 37, 358–364 (2018)CrossRefGoogle Scholar
  20. 20.
    Amrouche, B.; Pivert, X.L.: Artificial neural network based daily local forecasting for global solar radiation. Appl. Energy 130, 333–341 (2015)CrossRefGoogle Scholar
  21. 21.
    Mellit, A.; Pavan, A.M.: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 84, 807–821 (2010)CrossRefGoogle Scholar
  22. 22.
    Ehsan, R.M.; Simon, S.P.; Venkateswaran, P.R.: Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron. Neural Comput. Appl. 28, 3981–3992 (2017)CrossRefGoogle Scholar
  23. 23.
    Chen, S.X.; Gooi, H.B.; Wang, M.Q.: Solar radiation forecast based on fuzzy logic and neural networks. Renew. Energy 60, 195–201 (2013)CrossRefGoogle Scholar
  24. 24.
    Safi, S.; Zeroual, A.; Hassani, M.: Prediction of global daily solar radiation using higher order statistics. Renew. Energy 27, 647–660 (2002)CrossRefGoogle Scholar
  25. 25.
    Chupong, C.; Plangklang, B.: Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement. Energy Proc. 9, 230–237 (2011)CrossRefGoogle Scholar
  26. 26.
    De Giorgi, M.G.; Ficarella, A.; Tarantino, M.: Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 36, 3968–3978 (2011)CrossRefGoogle Scholar
  27. 27.
    Yang, H.T.; Huang, C.; Huang, Y.; Pa, Y.: A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE Trans. Sustain. Energy 5, 917–925 (2014)CrossRefGoogle Scholar
  28. 28.
    Basaran, K.; Özçift, A.; Kılınç, D.: A new approach for prediction of solar radiation with using ensemble learning algorithm. Arab. J. Sci. Eng. 4, 1–13 (2019)Google Scholar
  29. 29.
    Douiri, M.R.: A predictive model for solar photovoltaic power based on computational intelligence technique. Arab. J. Sci. Eng. 2, 1–18 (2019)Google Scholar
  30. 30.
    Haykin, Simon: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1998)zbMATHGoogle Scholar
  31. 31.
    Zhang, Z.: Artificial neural network. In: Multivariate Time Series Analysis in Climate and Environmental Research, pp. 1–35. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-67340-0_1 Google Scholar
  32. 32.
    Piliougine, M.; Elizondo, D.; Mora-Lopez, L.; Sidrach-de-Cardona, M.: Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules. Appl. Energy 112, 610–617 (2013)CrossRefGoogle Scholar
  33. 33.
    Sundar, C.; Chitradevi, M.; Geetharamani, G.: Classification of cardiotocogram data using neural network based machine learning technique. Int. J. Comput. Appl. 47, 93–103 (2012)Google Scholar
  34. 34.
    Hagan, M.T.; Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5, 989–993 (1995)CrossRefGoogle Scholar
  35. 35.
    Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey Wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  36. 36.
    Kennedy, J.; Eberhart, R.: Particle swam optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  37. 37.
    Lin, C.; Yang, K.; Huang, J.; Tang, W.; Qin, J.; Niu, X.; Chen, Y.; Chen, D.; Lu, N.; Fu, R.: Impacts of wind stilling on solar radiation variability in China. Sci. Rep. 5, 1–7 (2015)Google Scholar
  38. 38.
    Srivastava, P.; Dey, S.; Agarwal, P.; Basil, G.: Aerosol characteristics over Delhi national capital region: a satellite view. Int. J. Remote Sens. 35, 5036–5052 (2014)CrossRefGoogle Scholar
  39. 39.
    Liu, J.; Fang, W.; Zhang, X.; Yang, C.: An improved photovoltaic power forecasting model with the assistance of aerosol index data. IEEE Trans. Sustain. Energy 6, 434–442 (2015)CrossRefGoogle Scholar
  40. 40.
    Chaabane, M.; Masmoudi, M.; Medhioub, K.: Determination of Linke turbidity factor from solar radiation measurement in northern Tunisia. Renew. Energy 29, 2065–2076 (2004)CrossRefGoogle Scholar
  41. 41.
    Wang, L.; Chen, Y.; Niu, Y.; Salazar, G.; Gong, W.: Analysis of atmospheric turbidity in clear skies at Wuhan, Central China. J. Earth Sci. 28, 729–738 (2017)CrossRefGoogle Scholar
  42. 42.
    Kasten, F.: A simple parameterization of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol. Rdsch. 33, 124–127 (1980)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringDelhi Technological UniversityDelhiIndia

Personalised recommendations