Arabian Journal for Science and Engineering

, Volume 44, Issue 10, pp 8361–8376 | Cite as

Mechanical Characterization of Concrete Reinforced with Different Types of Carbon Nanotubes

  • A. HawreenEmail author
  • J. A. Bogas
  • R. Kurda
Research Article - Civil Engineering


The main purpose of this study is to characterize the mechanical properties of concrete reinforced with carbon nanotubes (CNT). For this, an extensive experimental program was carried out involving the production and characterization of concrete mixes with five types of CNT, in terms of flexural, splitting tensile and compressive strength, ultrasonic pulse velocity, elastic modulus and fracture toughness. The dispersion ability of CNT in a wide range of pH aqueous suspensions was evaluated prior to their incorporation in concrete. It was found that 0.05–0.1% of CNT were effective to improve all tested properties, increasing the compressive, flexural and splitting tensile strength, as well as the fracture energy and elastic modulus up to 23%, 18%, 27%, 42% and 15%, respectively. The CNT showed great potential to improve the crack resistance and the fracture toughness of concrete, especially in the pre-peak performance of concrete. In relative to other types of CNT, concrete containing higher dosages of lower aspect ratio CNT had the highest improvement of mechanical strength. This is explained by the lower structural damage and higher dispersion capacity of this type of CNT in high pH environments. Nevertheless, higher aspect ratio CNT showed better contribution for the fracture energy, due to their more efficient bridging effect.


Carbon nanotube Concrete Elastic modulus Ultrasonic pulse velocity Fracture toughness Mechanical strength 



The authors wish to thank research group CERIS for funding the study, as well as the companies BASF and SECIL for supplying the materials used in the experiments. The authors are grateful for the support of Centre for Imaging and Structure of Materials at Aveiro Institute of Materials-University of Aveiro and Department of Physics at Instituto Superior Técnico-University of Lisbon for providing equipment of Zeta potential and Raman spectroscopy tests, respectively. The first author also would like to thank Fundação Calouste Gulbenkian (Portugal) for the financial support through Scholarship No. 125745.


  1. 1.
    Avouris, P.; Martel, R.; Derycke, V.; Appenzeller, J.: Carbon nanotube transistors and logic circuits. Phys. B 323, 6–14 (2002)CrossRefGoogle Scholar
  2. 2.
    Yu, M.-F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)CrossRefGoogle Scholar
  3. 3.
    Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S.L.; Schatz, G.C.; Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3, 626–631 (2008)CrossRefGoogle Scholar
  4. 4.
    Salvetat, J.; Bonard, J.; Thomson, N.; Kulik, A.; Forro, L.; Benoit, W.; Zuppiroli, L.: Mechanical properties of carbon nanotubes. J. Appl. Phys A. 69, 255–260 (1999)CrossRefGoogle Scholar
  5. 5.
    Hawreen, A.; Bogas, J.A.: Creep and shrinkage of concrete reinforced with different types of carbon nanotubes. Constr. Build. Mater. 198, 70–81 (2019)CrossRefGoogle Scholar
  6. 6.
    Hawreen, A.; Bogas, A.; Guedes, M.: Mechanical behaviour and transport properties of cementitious composites reinforced with carbon nanotubes. J. Mater. Civ. Eng. 30, 04018257 (2018). CrossRefGoogle Scholar
  7. 7.
    Hawreen, A.; Bogas, J.; Guedes, M.; Pereira, M.F.C.: Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites. Mag. Concr. Res. 71, 408–423 (2019)CrossRefGoogle Scholar
  8. 8.
    Hawreen, A.; Bogas, J.A.; Dias, A.P.S.: On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Constr. Build. Mater. 168, 459–470 (2018)CrossRefGoogle Scholar
  9. 9.
    Hawreen, A.; Bogas, J.A.: Influence of carbon nanotubes on steel-concrete bond strength. Mater. Struct. (2018). Google Scholar
  10. 10.
    Carriço, A.; Bogas, J.A.; Hawreen, A.; Guedes, M.: Durability of multi-walled carbon nanotube reinforced concrete. Constr. Build. Mater. 164, 121–133 (2018)CrossRefGoogle Scholar
  11. 11.
    Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V.: Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20, 65–73 (2008)CrossRefGoogle Scholar
  12. 12.
    Kumar, S.; Kolay, P.; Malla, S.; Mishra, S.: Effect of multiwalled carbon nanotubes on mechanical strength of cement paste. J. Mater. Civ. Eng. 24, 84–91 (2012)CrossRefGoogle Scholar
  13. 13.
    Musso, S.; Tulliani, J.; Ferro, G.; Tagliaferro, A.: Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 69, 1985–1990 (2009)CrossRefGoogle Scholar
  14. 14.
    Nochaiya, T.; Chaipanich, A.: Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 257, 1941–1945 (2011)CrossRefGoogle Scholar
  15. 15.
    Li, G.Y.; Wang, P.M.; Zhao, X.: Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43, 1239–1245 (2005)CrossRefGoogle Scholar
  16. 16.
    Stynoski, P.; Mondal, P.; Marsh, C.: Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cem. Concr. Compos. 55, 232–240 (2015)CrossRefGoogle Scholar
  17. 17.
    Makar, J., Margeson, J., Luh, J.: Carbon nanotube/cement composites-early results and potential applications. In: 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, pp. 1–10 (2005)Google Scholar
  18. 18.
    Makar, J.; Chan, G.: Growth of cement hydration products on single-walled carbon nanotubes. J. Am. Ceram. Soc. 92, 1303–1310 (2009)CrossRefGoogle Scholar
  19. 19.
    Bogas, J.A.; Hawreen, A.; Olhero, S.; Ferro, A.C.; Guedes, M.: Selection of dispersants for stabilization of unfunctionalized carbon nanotubes in high pH aqueous suspensions: application to cementitious matrices. Appl. Surf. Sci. 463, 169–181 (2019)CrossRefGoogle Scholar
  20. 20.
    BSEN197-1. Cement. Composition, Specifications and Conformity Criteria for Common Cements in BSEN (British Standard European Norm). London, UK (2011)Google Scholar
  21. 21.
    BSEN1097-6. Tests for Mechanical and Physical Properties of Aggregates. Determination of Particle Density and Water Absorption, in BSEN (British Standard European Norm). London, UK (2013)Google Scholar
  22. 22.
    BSEN1097-3. Tests for Mechanical and Physical Properties of Aggregates. Determination of Loose Bulk Density and Voids, in BSEN (British Standard European Norm). London, UK (1998)Google Scholar
  23. 23.
    BSEN933-4. Tests for Geometrical Properties of Aggregates. Determination of Particle Shape. Shape Index, in BSEN (British Standard European Norm). London, UK (2008)Google Scholar
  24. 24.
    BSEN1097-2. Tests for Mechanical and Physical Properties of Aggregates. Methods for the Determination of Resistance to Fragmentation in BSEN (British Standard European Norm). London, UK (2010)Google Scholar
  25. 25.
    Guedes, M., Hawreen, A., Bogas, J., Olhero, S.: Experimental procedure for evaluation of CNT dispersion in high pH media characteristic of cementitious matrixes. In 1º Congress of Tests and Experimentation in Civil Engineering. 4/6/2016. Instituto Superior Técnico, Lisbon, PortugalGoogle Scholar
  26. 26.
    BSEN206-1. Concrete. Specification, Performance, Production and Conformity, in BSEN (British Standard European Norm). London, UK (2000)Google Scholar
  27. 27.
    BSEN12390-3. Testing Hardened Concrete. Compressive Strength of Test Specimens, in BSEN (British Standard European Norm). London, UK (2009)Google Scholar
  28. 28.
    BSEN12390-6. Testing Hardened Concrete. Tensile Splitting Strength of Test Specimens, in BSEN (British Standard European Norm). London, UK (2009)Google Scholar
  29. 29.
    BSEN12390-5. Testing Hardened Concrete. Flexural Strength of Test Specimens, in BSEN (British Standard European Norm). London, UK (2009)Google Scholar
  30. 30.
    BSEN12504-4. Testing Concrete. Determination of Ultrasonic Pulse Velocity, in BSEN (British Standard European Norm). London, UK (2004)Google Scholar
  31. 31.
    LNECE397. Concretes: determination of the modulus of elasticity under compression. In: LNEC (Laboratório Nacional de Engenharia Civil). Lisbon, Portugal (1993)Google Scholar
  32. 32.
    ASTMC1609/C1609M. Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading) (2012)Google Scholar
  33. 33.
    RILEM-TCS: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct 18, 285–290 (1985)CrossRefGoogle Scholar
  34. 34.
    Shah, S.: Determination of fracture parameters (KIcs and CTODc) of plain concrete using three-point bend tests. Mater. Struct. 23, 457–460 (1990)CrossRefGoogle Scholar
  35. 35.
    Lee, J.; Kim, M.; Hong, C.; Shim, S.: Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents. Meas. Sci. Technol. 18, 3707–3712 (2007)CrossRefGoogle Scholar
  36. 36.
    Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRefGoogle Scholar
  37. 37.
    Cançado, L.G.; Pimenta, M.A.; Saito, R.; Jorio, A.; Ladeira, L.O.; Grueneis, A.; Souza-Filho, A.G.; Dresselhaus, G.; Dresselhaus, M.S.: Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B. (2002). Google Scholar
  38. 38.
    Kowald, T., Trettin, R.: Improvement of cementitious binders by multi-walled carbon nanotubes. In: Bittnar, Z., et al. (eds.), Nanotechnology in Construction 3: Proceedings of the NICOM3, pp. 261–266. Springer, Berlin (2009)Google Scholar
  39. 39.
    Chen, S.J.; Collins, F.G.; Macleod, A.J.N.; Pan, Z.; Duan, W.H.; Wang, C.M.: Carbon nanotube-cement composites: a retrospect. IES J Part A Civ Struct Eng 4, 254–265 (2011)CrossRefGoogle Scholar
  40. 40.
    Neville, A.: Properties of Concrete. Pitman Publishing Comp. Ltd, New York (1995)Google Scholar
  41. 41.
    Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.M.; Duan, W.H.: Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 85, 212–220 (2015)CrossRefGoogle Scholar
  42. 42.
    Bogas, J.: Characterization of structural concrete with light aggregates of expanded clay. In: Departamento de Engenharia Civil, Arquitectura e Georrecursos. Ph.D. Thesis. Instituto Superior Técnico (2011) (in Portuguese) Google Scholar
  43. 43.
    BSEN1992-2. Eurocode 2. Design of Concrete Structures. Concrete Bridges. Design and Detailing Rules, in BSEN (British Standard European Norm). London, UK (2005)Google Scholar
  44. 44.
    Pundit, Pundit Manual for Use with the Portable Ultrasonic Non-destructive Digital Indicating Tester. C.N.S. Electronics Ltd., London. (1991)
  45. 45.
    Mehta, P.; Monteiro, P.: Concrete: Microstructure, Properties and Materials. McGraw-Hill Professional Publishing, New York (2006)Google Scholar
  46. 46.
    Manzur, T.; Yazdani, N.: Optimum mix ratio for carbon nanotubes in cement mortar. KSCE J. Civil Eng. 19, 1405–1412 (2014)CrossRefGoogle Scholar
  47. 47.
    Hamzaoui, R.; Guessasma, S.; Mecheri, B.; Eshtiaghi, A.M.; Bennabi, A.: Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes. Mater. Des. 56, 60–68 (2014)CrossRefGoogle Scholar
  48. 48.
    Kim, H.K.; Nam, I.W.; Lee, H.K.: Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos. Struct. 107, 60–69 (2014)CrossRefGoogle Scholar
  49. 49.
    BSEN1992-1-1. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings, in BSEN (British Standard European Norm). London, UK (2004)Google Scholar
  50. 50.
    fib10. Bond of Reinforcement in Concrete. Bulletin 10, State-of-Art-Report. Lausanne: fib—CEB-FIP—Fédération internationale du béton, p. 434 (2000)Google Scholar
  51. 51.
    Canovas, M.F.: Colegio de Ingenieros de caminos, canales y puertos: Hormigon. Espanha, Madrid (2004)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.CERIS, DECivil, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Department of Civil Engineering, Technical Engineering CollegeErbil Polytechnic UniversityKurdistan Region, ErbilIraq

Personalised recommendations