Arabian Journal for Science and Engineering

, Volume 44, Issue 10, pp 8545–8555 | Cite as

Investigation on Mode I Fracture Behavior of Hybrid Fiber-Reinforced Geopolymer Composites

  • Neha P. Asrani
  • G. MuraliEmail author
  • Hakim S. Abdelgader
  • K. Parthiban
  • M. K. Haridharan
  • K. Karthikeyan
Research Article - Civil Engineering


Recent reports in the literature have shown that fiber-reinforced geopolymer composites (FRGC) made with monofibers exhibit a significant enhancement in fracture energy. However, many aspects of the fracture performance of hybrid fiber-reinforced geopolymer composites (HFRGC) remain largely unexploited, and these are predominant for the structures. For the first time, the mode I fracture energy of HFRGC is investigated. The mode I behavior was assessed using pre-notched beams in accordance with the RILEM three-point bending test. Five different HFRGC mixtures were prepared using three fiber types: steel, polypropylene and glass (SF, PF and GF). The parameters of the pre-notched beam in flexure tested in this study were the first crack and peak load, crack mouth opening displacement at the first crack load and peak load, equivalent tensile strength, post-peak slope, reinforcing index, residual tensile strength and fracture energy. The results reveal that there is a positive interaction amidst the fibers in geopolymer composites that leads to an enhancement in the mode I fracture energy compared to the reference specimen. This study probes the influence of novel HFRGC while producing high-quality concrete, which can then be leveraged for sustainable infrastructure and various civil engineering works.


Steel Polypropylene Glass Geopolymer concrete Fracture 



Authors are grateful to SASTRA University for the support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Asrani, N.P.; Murali, G.; Parthiban, K.; Surya, K.; Prakash, A.; Rathika, K.; Chandru, U.: A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: experiments and modelling. Constr. Build. Mater. 203, 56–68 (2019)CrossRefGoogle Scholar
  2. 2.
    Maa, C.K.; Awang, A.Z.; Omar, W.: Structural and material performance of geopolymer concrete: a review. Constr Build Mater. 186, 90–102 (2018)CrossRefGoogle Scholar
  3. 3.
    Sakulich, A.R.: Reinforced geopolymer composites for enhanced material greenness and durability. Sustain. Cities Soc. 1(4), 195–210 (2011)CrossRefGoogle Scholar
  4. 4.
    Benhalal, E.; Zahedi, G.; Shamsaei, E.; Bahodori, A.: Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 51, 142–161 (2012)CrossRefGoogle Scholar
  5. 5.
    Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.: Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Compos. Struct. 168, 402–427 (2017)CrossRefGoogle Scholar
  6. 6.
    Deb, P.S.; Nath, P.; Sarker, P.K.: The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 62(10), 32–39 (2014)CrossRefGoogle Scholar
  7. 7.
    Patil, K.K.; Allouche, E.N.: Impact of alkali silica reaction on fly ash-based geopolymer concrete. J. Mater. Civ. Eng. 25(1), 131–139 (2013)CrossRefGoogle Scholar
  8. 8.
    Sukontasukkul, P.; Pongsopha, P.; Chindaprasirt, P.; Songpiriyakij, S.: Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Constr. Build. Mater. 161, 37–44 (2018)CrossRefGoogle Scholar
  9. 9.
    Noushini, A.; Hastings, M.; Castel, A.; Aslani, F.: Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Constr. Build. Mater. 186, 454–475 (2018)CrossRefGoogle Scholar
  10. 10.
    Majidi, M.H.A.; Lampropoulos, A.; Cundy, A.B.: Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Constr. Build. Mater. 139, 286–307 (2017)CrossRefGoogle Scholar
  11. 11.
    Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A.: Comparative deflection hardening behavior of short fiber reinforced geopolymers composites. Constr. Build. Mater. 70(15), 54–64 (2014)CrossRefGoogle Scholar
  12. 12.
    Shaikh, F.U.A.: Deflection hardening behavior of short fiber reinforced fly ash based geopolymer composites. Mater. Des. 50, 674–682 (2013)CrossRefGoogle Scholar
  13. 13.
    Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A.: Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. Part B Eng. 89, 253–265 (2015)CrossRefGoogle Scholar
  14. 14.
    Korniejenko, K.; Fraczek, E.; Pytlak, E.; Adamski, M.: Mechanical properties of geopolymer composites reinforced with natural fibers. Proc. Eng. 151, 388–393 (2016)CrossRefGoogle Scholar
  15. 15.
    Kabay, N.: Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 50, 95–101 (2014)CrossRefGoogle Scholar
  16. 16.
    Lee, J.; Lopez, M.M.: An experimental study on fracture energy of plain concrete. Int. J. Concr. Struct. Mater. 8(2), 129–139 (2014)CrossRefGoogle Scholar
  17. 17.
    Bideci, A.; Öztürk, H.; Bideci, Ö.S.; Emiroglu, M.: Fracture energy and mechanical characteristics of self-compacting concretes including waste bladder tyre. Constr. Build. Mater. 149, 669–678 (2017)CrossRefGoogle Scholar
  18. 18.
    Kumar, S.S.; Pazhani, K.C.; Ravisankar, K.: Fracture behaviour of fibre reinforced geopolymer concrete. Curr. Sci. 113(1), 116–122 (2017)CrossRefGoogle Scholar
  19. 19.
    Xie, J.; Huang, L.; Guo, Y.; Li, Z.; Fang, C.; Li, L.; Wang, J.: Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres. Constr. Build. Mater. 178, 612–623 (2018)CrossRefGoogle Scholar
  20. 20.
    Yao, W.; Li, J.; Keru, W.: Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem. Concr. Res. 33(1), 27–30 (2003)CrossRefGoogle Scholar
  21. 21.
    Sivakumar, A.; Santhanam, M.: A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cem. Concr. Compos. 29(7), 575–581 (2007)CrossRefGoogle Scholar
  22. 22.
    Hsie, M.; Chijen, T.; Song, P.S.: Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 494(1–2), 153–157 (2008)CrossRefGoogle Scholar
  23. 23.
    Ganesan, N.; Indira, P.V.; Sabeena, M.V.: Behaviour of hybrid fibre reinforced concrete beam–column joints under reverse cyclic loads. Mater. Des. 54, 686–693 (2014)CrossRefGoogle Scholar
  24. 24.
    Banthia, N.; Soleimani, S.M.: Flexural response of hybrid fiber reinforced cementitious composites. ACI Mater. J. 102(6), 382–389 (2005)Google Scholar
  25. 25.
    Almusallam, T.; Ibrahim, S.M.; Al-Salloum, Y.; Aref, A.; Abbas, H.: Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cem. Concr. Compos. 74, 201–217 (2016)CrossRefGoogle Scholar
  26. 26.
    Rooholamini, H.; Hassani, A.; Aliha, M.R.M.: Fracture properties of hybrid fibre-reinforced roller-compacted concrete in mode I with consideration of possible kinked crack. Constr. Build. Mater. 187, 248–256 (2018)CrossRefGoogle Scholar
  27. 27.
    Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.: Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres. Compos. Struct. 171, 317–325 (2017)CrossRefGoogle Scholar
  28. 28.
    Parthiban, K.; Kaliyaperumal, S.R.M.: Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete. Constr. Build. Mater. 102(1), 51–58 (2016)Google Scholar
  29. 29.
    Parthiban, K.; Kaliyaperumal, S.R.M.: Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete. Constr. Build. Mater. 133, 65–72 (2017)CrossRefGoogle Scholar
  30. 30.
    IS: 516-1959. Indian Standard Method of Tests for Strength of Concrete. Reaffirmed (2004)Google Scholar
  31. 31.
    RILEM TC 162-TDF; Vandewalle, L.; et al.: Test and design methods for steel fibre reinforced concrete bending test, materials and structures, RILEM Publications. Mater. Struct. 35, 579–582 (2002)CrossRefGoogle Scholar
  32. 32.
    Al-Tayeb, M.M.; Abu Bakar, B.; Akil, H.M.; Ismail, H.: Effect of partial replacements of sand and cement by waste rubber on the fracture characteristics of concrete. Polym. Plast. Technol. Eng. 51(6), 583–589 (2012)CrossRefGoogle Scholar
  33. 33.
    Güneyisi, E.; Gesoglu, M.; Özturan, T.; Ipek, S.: Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber. Constr. Build. Mater. 84, 156–168 (2015)CrossRefGoogle Scholar
  34. 34.
    Malvar, L.J.; Warren, G.: Fracture energy for three-point-bend tests on single edge-notched beams. Exp. Mech. 28(3), 266–272 (1988)CrossRefGoogle Scholar
  35. 35.
    RILEM FMC-50: Determination of the fracture energy of mortar and concrete by means of three point bend tests on notched beams. Mater. Struct. 18(4), 287–290 (1985)CrossRefGoogle Scholar
  36. 36.
    Beygi, M.H.A.; Kazemi, M.T.; Nikbin, I.M.; Amiri, J.V.: The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. Mater. Des. 50, 267–276 (2013)CrossRefGoogle Scholar
  37. 37.
    Madandoust, R.; Ranjbar, M.M.; Ghavidel, R.; Shahabi, S.F.: Assessment of factors influencing mechanical properties of steel fiber reinforced self-compacting concrete. Mater. Des. 83, 284–294 (2015)CrossRefGoogle Scholar
  38. 38.
    Ezeldin, A.S.; Balaguru, P.N.: Normal-and high-strength fiber-reinforced concrete under compression. ASCE J. Mater. Civ. Eng. 4(4), 415–429 (1992)CrossRefGoogle Scholar
  39. 39.
    Karadelis, J.N.; Lin, Y.: Flexural strengths and fibre efficiency of steel fibre- reinforced, roller-compacted, polymer modified concrete. Constr. Build. Mater. 93, 498–505 (2015)CrossRefGoogle Scholar
  40. 40.
    Banthia, N.; Majdzadeh, F.; Wu, J.; Bindiganavile, V.: Fiber synergy in hybrid fiber reinforced concrete (HFRC) in flexure and direct shear. Cem. Concr. Compos. 48, 91–97 (2014)CrossRefGoogle Scholar
  41. 41.
    Banthia, N.; Nandakumar, N.: Crack growth resistance of hybrid fiber reinforced cement composites. Cem. Concr. Compos. 25(1), 3–9 (2003)CrossRefGoogle Scholar
  42. 42.
    Markovic, I.: High-Performance Hybrid-Fibre Concrete: Development and Utilisation. IOS Press, Amsterdam (2006)Google Scholar
  43. 43.
    Nataraja, M.C.; Dhang, N.; Gupta, A.P.: Stress-strain curves for steel-fiber reinforced concrete in compression. Cem. Concr. Compos. 21(5–6), 383–390 (1999)CrossRefGoogle Scholar
  44. 44.
    Taerwe, L.; Gysel, A.: Influence of steel fibers on design stress–strain curve for high-strength concrete. J. Eng. Mech. 122, 695–704 (1996)CrossRefGoogle Scholar
  45. 45.
    Abadel, A.; Abbas, H.; Almusallam, T.; Al-Salloum, Y.; Siddiqui, N.: Experimental and analytical investigations of mechanical properties of hybrid fiber reinforced concrete. Mag. Concr. Res. 68(16), 823–843 (2016)CrossRefGoogle Scholar
  46. 46.
    Ibrahim, S.M.; Almusallam, T.H.; Al-Salloum, Y.A.; Abadel, A.A.; Abbas, H.: Strain rate dependent behavior and modeling for compression response of hybrid fiber reinforced concrete. Lat. Am. J. Solids Struct. 13, 1695–1715 (2016)CrossRefGoogle Scholar
  47. 47.
    Barros, J.A.O.; Cunha, V.M.C.F.; Ribeiro, A.F.; Antunes, J.A.B.: Post-cracking behavior of steel fibre reinforced concrete. Mater. Struct. 38, 47–56 (2005)CrossRefGoogle Scholar
  48. 48.
    RILEM TC 162-TDF: Test and design method for steel fibre reinforced concrete: σ–ε design method, final recommendation. Mater. Struct. 36(262), 560–567 (2003)CrossRefGoogle Scholar
  49. 49.
    RILEM TC 162-TDF: Test and design method for steel fibre reinforced concrete, recommendation. Mater Struct. 33, 3–5 (2000)CrossRefGoogle Scholar
  50. 50.
    Ernst Sohn, V.: International Federation for Structural Concrete. Fib Model Code for Concrete Structures, Berlin (2010)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.School of Civil EngineeringSASTRA Deemed To Be UniversityThanjavurIndia
  2. 2.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdańskPoland
  3. 3.Department of Civil EngineeringUniversity of TripoliTripoliLibya
  4. 4.Amrita School of EngineeringAmrita Vishwa Vidyapeetham Deemed To Be UniversityCoimbatoreIndia
  5. 5.SMBSVIT Deemed UniversityChennaiIndia

Personalised recommendations