Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 10, pp 8835–8848 | Cite as

Influence of Cement Type and Sample Preparation on the Small-Strain Behaviour of Sands

  • Ali Firat CabalarEmail author
  • Zuheir Karabash
Research Article - Civil Engineering
  • 35 Downloads

Abstract

Cementing of soil grains occurs naturally in many weak rocks and soils due to various environmental processes, which might be attributed mainly to the stress state, curing, and type of cement. This study reports an intensive series of triaxial testing results based on the small-strain measurements of artificially cemented sand grains. Influence of five different sample preparation methods, and four different cement types on the triaxial behaviour, were studied. The cementing agents used during the experimental works were gypsum, lime, calcite, and Portland cement. It was observed that type of cement has a significant effect on the testing results. The change in triaxial behaviour of sands due to the differences in sample preparation techniques was slightly affected by Portland cement, but significantly affected by the gypsum, lime, and calcite.

Keywords

Triaxial test Sand Cement Sample preparation 

References

  1. 1.
    Gens, A.; Nova, R.: Conceptual bases for a constitutive model for model for bonded soils and weak rocks. In: Anagnostopoulos, A., et al. (eds.) Geotechnical Engineering of Hard Soils-Soft Rocks, vol. 1, pp. 485–494. Balkema, Rotterdam (1993)Google Scholar
  2. 2.
    Allman, M.A.; Poulos, H.G.: Stress–stress behaviour of an artificially cemented calcareous soil. In: Jewell, R.J., Andrews, D.C. (eds.) Proceedings of the International Conference on Calcareous Sediments, vol. 2, pp. 51–58. Balkema, Rotterdam (1988)Google Scholar
  3. 3.
    Huang, J.T.; Airey, D.W.: Properties of artificially cemented carbonate sand. J. Geotech. Geoenviron. Eng. Div. 124(6), 492–499 (1998)Google Scholar
  4. 4.
    Ismail, M.A.; Joer, H.A.; Randolph, M.F.: Sample preparation technique for artificially cemented sands. Geotech. Test. J. 23(1), 141–157 (2000)Google Scholar
  5. 5.
    Fernandez, A.L.; Santamarina, J.C.: Effect of cementation on the small-strain parameters of sands. Can. Geotech. J. 38, 191–199 (2001)Google Scholar
  6. 6.
    Baudet, B.; Stallebrass, S.: A constitutive model for structured clays. Géotechnique 54(4), 269–278 (2004)Google Scholar
  7. 7.
    Trhlikova, J.; Masin, D.; Bohac, J.: Small-strain behaviour of cemented soils. Geotechnique 62(10), 943–947 (2012)Google Scholar
  8. 8.
    Mola-Abasi, H.; Khajech, A.; Semsani, S.N.: Variables controlling tensile strength of stabilized sand with cement and zeolite. J. Adhes. Sci. Technol. 32(9), 947–962 (2018)Google Scholar
  9. 9.
    Georgees, R.N.; Hassan, R.A.; Evans, R.P.; Jegatheesan, P.: Resilient response characterization of pavement foundation materials using a polyacrylamide-based stabilizer. J. Mater. Civ. Eng. 30(1), 04017252 (2018)Google Scholar
  10. 10.
    Wang, D.X.; Zentar, R.; Abriak, N.E.: Durability and swelling of solidified/stabilized dredged marine soils with class-F fly ash, cement, and lime. J. Mater. Civ. Eng. 30(3), 04018013 (2018)Google Scholar
  11. 11.
    Sharma, L.K.; Sirdesai, N.N.; Sharma, K.M.; Singh, T.N.: Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: a comparative study. Appl. Clay Sci. 152, 183–195 (2018)Google Scholar
  12. 12.
    Cabalar, A.F.; Karabash, Z.; Erkmen, O.: Stiffness of a biocemented sand at small strains. Eur. J. Environ. Civ. Eng. 1, 54 (2018).  https://doi.org/10.1080/19648189.2016.1248791 Google Scholar
  13. 13.
    Acar, B.Y.; El-Tahir, A.E.: Low strain dynamic properties of artificially cemented sands. J. Geotech. Eng. Div. 112(11), 1001–1015 (1986)Google Scholar
  14. 14.
    Rotta, G.V.; Consoli, N.C.; Prietto, P.D.M.; Coop, M.R.; Graham, J.: Isotropic yielding in an artificially cemented soil cured under stress. Géotechnique 53(5), 493–501 (2003)Google Scholar
  15. 15.
    Maccarini, M.: Laboratory studies of weakly bonded artificial soil. Ph.D. Thesis, University of London (1987)Google Scholar
  16. 16.
    Bressani, L.A.: Experimental properties of bonded soils. Ph.D. Thesis, University of London (1990)Google Scholar
  17. 17.
    Malandraki, V.: The engineering behaviour of a weakly bonded artificial soil. Ph.D. Thesis, University of Durham (1994)Google Scholar
  18. 18.
    Ismail, M.A.; Joer, H.A.; Randolph, M.F.; Meritt, A.: Cementation of porous materials using calcite. Géotechnique 52(5), 313–324 (2002)Google Scholar
  19. 19.
    Kucharski, E.; Price, G.; Li, H.; Joer, H.A.: Engineering properties of CIPS cemented calcareous sand. In: Sijing, W.; Marinos, P. (eds.) Engineering Geology: Proceedings of the 30th International Geological Congress, Beijing, China, 4–14 August 1996, vol. 23, pp. 92–97. Brill Academic, Amsterdam (1996)Google Scholar
  20. 20.
    Micic, S.; Shang, J.Q.; Lo, K.Y.: Improvement of the load-carrying capacity of offshore skirted foundations by electrokinetics. Can. Geotech. J. 40(5), 949–963 (2003)Google Scholar
  21. 21.
    Mitchell, J.K.; Santamarina, J.C.: Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 131(10), 1222–1233 (2005)Google Scholar
  22. 22.
    Bressani, L.A.; Vaughan, P.R.: Damage to soil during triaxial testing. In: Proceedings of the XII International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 17–20, Rio de Janeiro (1989)Google Scholar
  23. 23.
    Zhu, F.; Clark, J.I.; Paulin, M.J.: Factors affecting at-rest lateral stress in artificially cemented sands. Can. Geotech. J. 32, 195–203 (1995)Google Scholar
  24. 24.
    Consoli, N.C.; Rotta, G.V.; Prietto, P.D.M.: Influence of curing under stress on the triaxial response of cemented soils. Geotechnique 50(1), 99–105 (2000)Google Scholar
  25. 25.
    Mitchell, J.K.: Fundamentals of Soil Behaviour. Wiley, Berlin (1976)Google Scholar
  26. 26.
    Rippa, F.; Picarelli, L.: Some considerations on index properties of Southern Italian shales. In: Proceedings of the International Symposium on the Geotechnics of Structurally Complex Formations, vol. 1, pp. 401–406, Capri (1977)Google Scholar
  27. 27.
    Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990)Google Scholar
  28. 28.
    Cotecchia, F.; Chandler, R.J.: A general framework for the mechanical behaviour of clays. Géotechnique 50(4), 431–447 (2000)Google Scholar
  29. 29.
    Chandler, R.J.: Clay sediments in depositional basins: the geotechnical cycle. Q. J. Eng. Geol. Hydrogeol. 33, 7–39 (2000)Google Scholar
  30. 30.
    Fearon, R.E.; Coop, M.R.: Reconstitution: what makes an appropriate reference material? Géotechnique 50(4), 471–477 (2000)Google Scholar
  31. 31.
    Rendulic, L.: Relation between void ratio and effective principal stresses for a remoulded silty clay. In: 1st International Conference on Soil Mechanics, vol. 3, pp. 48–53, Harvard (1936)Google Scholar
  32. 32.
    Hvorslev, M.J.: Uber die Festigkeitseigenschaften gestfirter bindiger Boden. Ingeniorvidenskabelige Skrifter A, No. 45, Copenhagen (1937)Google Scholar
  33. 33.
    Roscoe, K.H.; Schofield, A.N.; Wroth, C.P.: On the yielding of soils. Géotechnique 8(1), 22–53 (1958)Google Scholar
  34. 34.
    Schofield, A.N.; Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, Maidenherd, p. 310. ISBN 978-0641940484 (1968)Google Scholar
  35. 35.
    Malandraki, V.; Toll, D.G.: Triaxial tests on weakly bonded soil with changes in stress path. J. Geotech. Geoenviron. Eng. 127(3), 282–291 (2001)Google Scholar
  36. 36.
    Jardine, R.J.: Some observations on the kinematic nature of soil stiffness. Soils Found. 32(2), 111–124 (1992)Google Scholar
  37. 37.
    Clayton, C.R.I.; Heymann, G.: Stiffness of geomaterials at very small strains. Géotechnique 51(3), 245–255 (2001)Google Scholar
  38. 38.
    Thevanayagam, S.: Effect of fines on confining stress on undrained shear strength of silty sands. J. Geotech. Geoenviron. Eng. 124(6), 479–491 (1998)Google Scholar
  39. 39.
    Monkul, M.M.; Ozden, G.: Compressional behavior of clayey sand and transition fines content. Eng. Geol. 89, 195–205 (2007)Google Scholar
  40. 40.
    Cabalar, A.F.: Applications of the triaxial, resonant column and oedometer tests to the study of micaceous sands. Eng. Geol. 112, 21–28 (2010)Google Scholar
  41. 41.
    Cabalar, A.F.; Clayton, C.R.I.: Some observations of the effects of pore fluids on the triaxial behavior of a sand. Granul. Matter 12, 87–95 (2010)Google Scholar
  42. 42.
    Cabalar, A.F.; Hasan, R.A.: Compressional behaviour of various size/shape sand- clay mixtures with different pore fluids. Eng. Geol. 164, 36–49 (2013)Google Scholar
  43. 43.
    Hamidi, A.; Haeri, S.M.: Stiffness and deformation characteristics of a cemented gravely sand. Int. J. Civ. Eng. 6(3), 159–173 (2008)Google Scholar
  44. 44.
    Burland, J.B.; Symes, M.: A simple axial displacement gauge for use in the triaxial apparatus. Géotechnique 32(1), 62–65 (1982)Google Scholar
  45. 45.
    Jardine, R.J.; Symes, M.J.; Burland, J.B.: The measurement of soil stiffness in the triaxial apparatus. Géotechnique 34(3), 323–340 (1984)Google Scholar
  46. 46.
    Clayton, C.R.I.; Khatrush, S.A.: A new device for measuring local axial strains on triaxial specimens. Géotechnique 36(4), 593–597 (1986)Google Scholar
  47. 47.
    Cabalar, A.F.: Influence of grain shape and gradation on the shear behavior of sand mixtures. Sci. Iran. (2018).  https://doi.org/10.24200/sci.2017.4223 Google Scholar
  48. 48.
    Mollamahmutoglu, M.; Avci, E.: Cement grain size effect on the geotechnical properties of stabilized clay. Sci. Iran. 1, 6 (2018).  https://doi.org/10.24200/sci.2018.5237.1158 Google Scholar
  49. 49.
    Zhao, C.; Hou, R.; Zhou, J.: Particle contact characteristics of coarse-grained soils under normal contact. Eur. J. Environ. Civ. Eng. 22(1), 114–129 (2018)Google Scholar
  50. 50.
    Park, T.W.; Kim, H.J.; Tanvir, M.T.; Lee, J.B.; Moon, S.G.: Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils. Geomech. Eng. 14(1), 99–105 (2018)Google Scholar
  51. 51.
    Nasehi, S.A.; Uromeihy, A.; Nikudel, M.R.; Morsali, A.: Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotech. Geol. Eng. 34(1), 333–345 (2016)Google Scholar
  52. 52.
    El Howayek, M.; Bobet, A.; Santagata, M.: Microstructure and cementation of two carbonatic fine-grained soils. Can. Geotech. J. 56(3), 320–334 (2019)Google Scholar
  53. 53.
    Qian, Z.Z.; Sheng, M.Q.; Tian, K.P.: Cementation mechanism and micromechanical model of gobi gravel soil. Rock Soil Mech. 38(2), 138–144 (2017)Google Scholar
  54. 54.
    Shinsha, H.; Kumagai, T.: Material properties of solidified soil grains produced from dredged marine clay. Soils Found. 58(3), 678–688 (2018)Google Scholar
  55. 55.
    Kang, X.; Kang, G.C.; Chang, K.; Ge, L.: Chemically stabilized soft clays for road-base construction. J. Mater. Civ. Eng. 27(7), 04014199 (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of GaziantepGaziantepTurkey
  2. 2.Department of Dams and Water Resources EngineeringUniversity of MosulMosulIraq

Personalised recommendations