Arabian Journal for Science and Engineering

, Volume 44, Issue 10, pp 8325–8335 | Cite as

Impact of Slag Content and Curing Methods on the Strength of Alkaline-Activated Silico-Manganese Fume/Blast Furnace Slag Mortars

  • Muhammad Nasir
  • Megat Azmi Megat Johari
  • Moruf Olalekan YusufEmail author
  • Mohammed Maslehuddin
  • Mamdouh A. Al-Harthi
  • Hatim Dafalla
Research Article - Civil Engineering


In the reported study, the effect of slag content and curing methods on the strength development of alkaline activated (AA) silico-manganese fume (SiMnF (S)) and ground granulated blast furnace slag (GBSF (G)) blended mortar using NaOHaq and Na2SiO3aq was studied. The mixtures were prepared with 100% SiMnF (AAS100G0), i.e. control binder or 70% SiMnF plus 30% GBFS (AAS70G30), i.e. optimum binder and subjected to room-curing (CR) (25±2 °C) and heat-curing (CH) (60 °C for 24 h in oven) were examined. The raw materials and binders were characterized, while flow and compressive strength of mortar was evaluated. A linear increase in strength was noted in the room-cured specimens, regardless of binder type. The 3-day strength (42.6 MPa) of heat-cured AAS70G30CH specimens was 189 and 97% of the 3-day and 28-day strength, respectively, of room-cured specimens. However, a curing temperature beyond room-temperature did not favour the reaction of AAS100G0 system due to high Mn/Ca ratio and carbonation. It is postulated that the addition of 30% GBFS contributed to the strength and stability in the development of AASG mortar. Heat-curing of AAS70G30CH resulted in highest early-age strength due to dense microstructure induced by conspicuous embedment of Ca ions to the skeletal framework thereby increasing the amorphousity of the binder.


Alkaline-activated binder (AAB) Silico-manganese fume (SiMnF) Ground granulated blast furnace slag (GBFS) Curing methods Strength 



The support provided by School of Civil Engineering at Universiti Sains Malaysia is acknowledged.

Compliance of Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Davidovits, J.; Comrie, D.C.; Paterson, J.H.; Ritcey, D.J.: Geopolymeric concretes for environmental protection. Concr. Int. 12(7), 30–40 (1990)Google Scholar
  2. 2.
    Elibol, C.; Sengul, O.: Effects of activator properties and ferrochrome slag aggregates on the properties of alkali-activated blast furnace slag mortars. Arab. J. Sci. Eng. 41(4), 1561–1571 (2016)CrossRefGoogle Scholar
  3. 3.
    Rao, G.M.; Rao, T.D.G.: Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arab. J. Sci. Eng. 40(11), 3067–3074 (2015)CrossRefGoogle Scholar
  4. 4.
    Salami, B.A.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.: POFA-engineered alkali-activated cementitious composite performance in acid environment. J. Adv. Concr. Technol. 15(11), 684–699 (2017)CrossRefGoogle Scholar
  5. 5.
    Yusuf, M.O.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.: Evolution of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete. Mater. Des. 55, 387–393 (2014)CrossRefGoogle Scholar
  6. 6.
    Rakhimova, N.R.; Rakhimov, R.Z.: Toward clean cement technologies: a review on alkali-activated fly-ash cements incorporated with supplementary materials. J. Non Cryst. Solids 509, 31–41 (2019)CrossRefGoogle Scholar
  7. 7.
    Nath, P.; Sarker, P.K.: Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 66, 163–171 (2014)CrossRefGoogle Scholar
  8. 8.
    Bernal, S.A.; Rodríguez, E.D.; de Gutiérrez, R.M.; Gordillo, M.; Provis, J.L.: Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46(16), 5477–5486 (2011)CrossRefGoogle Scholar
  9. 9.
    Kumar, S.; Kumar, R.; Mehrotra, S.P.: Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 45(3), 607–615 (2010)CrossRefGoogle Scholar
  10. 10.
    Yusuf, M.O.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.: Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag. Constr. Build. Mater. 52, 504–510 (2014)CrossRefGoogle Scholar
  11. 11.
    Najimi, M.; Ghafoori, N.: Engineering properties of natural pozzolan/slag based alkali-activated concrete. Constr. Build. Mater. 208, 46–62 (2019)CrossRefGoogle Scholar
  12. 12.
    Nath, S.K.; Kumar S.: Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder. Waste Biomass Valorization 10, 2045–2055 (2019)CrossRefGoogle Scholar
  13. 13.
    Rashad, A.M.: Properties of alkali-activated fly ash concrete blended with slag. Iran. J. Mater. Sci. Eng. 10(1), 57–64 (2013)Google Scholar
  14. 14.
    Adam, A.: Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete (2009)Google Scholar
  15. 15.
    Li, X.; Wang, Z.; Jiao, Z.: Influence of curing on the strength development of calcium-containing geopolymer mortar. Mater. (Basel) 6(11), 5069–5076 (2013)CrossRefGoogle Scholar
  16. 16.
    Kim, B.-J.; Yi, C.; Kang, K.-I.: Microwave curing of alkali-activated binder using hwangtoh without calcination. Constr. Build. Mater. 98, 465–475 (2015)CrossRefGoogle Scholar
  17. 17.
    Narayanan, A.; Shanmugasundaram, P.: An experimental investigation on flyash-based geopolymer mortar under different curing regime for thermal analysis. Energy Build. 138, 539–545 (2017)CrossRefGoogle Scholar
  18. 18.
    Helmy, A.I.I.: Intermittent curing of fly ash geopolymer mortar. Constr. Build. Mater. 110, 54–64 (2016)CrossRefGoogle Scholar
  19. 19.
    Nguyen, K.T.; Le, T.A.; Lee, J.; Lee, D.; Lee, K.: Investigation on properties of geopolymer mortar using preheated materials and thermogenetic admixtures. Constr. Build. Mater. 130, 146–155 (2017)CrossRefGoogle Scholar
  20. 20.
    Atiş, C.D.; Görür, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E.: Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build. Mater. 96, 673–678 (2015)CrossRefGoogle Scholar
  21. 21.
    Kürklü, G.: The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos. Part B Eng. 92, 9–18 (2016)CrossRefGoogle Scholar
  22. 22.
    Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V.: On the development of fly ash-based geopolymer concrete. Mater. J. 101(6), 467–472 (2004)Google Scholar
  23. 23.
    Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H.: Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence. Cem. Concr. Res. 64, 30–41 (2014)CrossRefGoogle Scholar
  24. 24.
    Nasvi, M.M.C.; Gamage, R.P.; Jay, S.: Geopolymer as well cement and the variation of its mechanical behavior with curing temperature. Greenh. Gases Sci. Technol. 2(1), 46–58 (2012)CrossRefGoogle Scholar
  25. 25.
    Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S.: Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr. Build. Mater. 124, 606–614 (2016)CrossRefGoogle Scholar
  26. 26.
    Buchwald, A.; Schulz, M.: Alkali-activated binders by use of industrial by-products. Cem. Concr. Res. 35(5), 968–973 (2005)CrossRefGoogle Scholar
  27. 27.
    Aprianti, E.; Shafigh, P.; Bahri, S.; Farahani, J.N.: Supplementary cementitious materials origin from agricultural wastes—a review. Constr. Build. Mater. 74, 176–187 (2015)CrossRefGoogle Scholar
  28. 28.
    Hernández-Pellón, A.; Fernández-Olmo, I.; Ledoux, F.; Courcot, L.; Courcot, D.: Characterization of manganese-bearing particles in the vicinities of a manganese alloy plant. Chemosphere 175, 411–424 (2017)CrossRefGoogle Scholar
  29. 29.
    Thomas, K.; Gundewar, C.S.: Market survey on manganese ore (2014)Google Scholar
  30. 30.
    Frias, M.; Rodríguez, C.: Effect of incorporating ferroalloy industry wastes as complementary cementing materials on the properties of blended cement matrices. Cem. Concr. Compos. 30(3), 212–219 (2008)CrossRefGoogle Scholar
  31. 31.
    Frias, M.; de Rojas, M.I.S.; Menendez, I.; de Lomas, M.G.; Rodriguez, C.: Properties of SiMn slag as apozzolanic material in portland cement manufacture. Mater. Constr. 55(280), 53–62 (2005)CrossRefGoogle Scholar
  32. 32.
    Péra, J.; Ambroise, J.; Chabannet, M.: Properties of blast-furnace slags containing high amounts of manganese. Cem. Concr. Res. 29(2), 171–177 (1999)CrossRefGoogle Scholar
  33. 33.
    Kumar, S.; García-Triñanes, P.; Teixeira-Pinto, A.; Bao, M.: Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cem. Concr. Compos. 40, 7–13 (2013)CrossRefGoogle Scholar
  34. 34.
    Nath, S.K.; Kumar, S.: Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag-fly ash blends. Constr. Build. Mater. 147, 371–379 (2017)CrossRefGoogle Scholar
  35. 35.
    Criado, M.; Bernal, S.A.; Garcia-Triñanes, P.; Provis, J.L.: Influence of slag composition on the stability of steel in alkali-activated cementitious materials. J. Mater. Sci. 53(7), 5016–5035 (2018)CrossRefGoogle Scholar
  36. 36.
    Najamuddin, S.K.; Johari, M.A.M.; Maslehuddin, M.; Yusuf, M.O.: Synthesis of low temperature cured alkaline activated silicomanganese fume mortar. Constr. Build. Mater. 200, 387–397 (2019)CrossRefGoogle Scholar
  37. 37.
    Choi, S.; Kim, J.; Oh, S.; Han, D.: Hydro-thermal reaction according to the CaO/SiO2 mole-ratio in silico-manganese slag. J. Mater. Cycles Waste Mana. 19(1), 374–381 (2017)CrossRefGoogle Scholar
  38. 38.
    Allahverdi, A.; Ahmadnezhad, S.: Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Technol. 251, 41–51 (2014)CrossRefGoogle Scholar
  39. 39.
    Shi, C.; Roy, D.; Krivenko, P.: Alkali-Activated Cements and Concretes. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  40. 40.
    Bernal, S.A.; Provis, J.L.; Rose, V.; De Gutierrez, R.M.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33(1), 46–54 (2011)CrossRefGoogle Scholar
  41. 41.
    Cheng, T.W.; Chiu, J.P.: Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 16(3), 205–210 (2003)CrossRefGoogle Scholar
  42. 42.
    BS EN 1015: Determination of consistence of fresh mortar by flow table and bulk density (1999)Google Scholar
  43. 43.
    Puertas, F.; Varga, C.; Alonso, M.M.: Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem. Concr. Compos. 53, 279–288 (2014)CrossRefGoogle Scholar
  44. 44.
    Saha, S.; Rajasekaran, C.: Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr. Build. Mater. 146, 615–620 (2017)CrossRefGoogle Scholar
  45. 45.
    Wang, S.-D.; Scrivener, K.L.: Hydration products of alkali activated slag cement. Cem. Concr. Res. 25(3), 561–571 (1995)CrossRefGoogle Scholar
  46. 46.
    Dombrowski, K.; Buchwald, A.; Weil, M.: The influence of calcium content on the structure and thermal performance of fly ash-based geopolymers. J. Mater. Sci. 42(9), 3033–3043 (2007)CrossRefGoogle Scholar
  47. 47.
    Shi, Z.; Shi, C.; Wan, S.; Li, N.; Zhang, Z.: Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cem. Concr. Res. 113, 55–64 (2018)CrossRefGoogle Scholar
  48. 48.
    Collier, N.C.: Transition and decomposition temperatures of cement phases–a collection of thermal analysis data. Ceram. Silikaty 60(4), 338–343 (2016)Google Scholar
  49. 49.
    Ghafari, E.; Feys, D.; Khayat, K.: Feasibility of using natural SCMs in concrete for infrastructure applications. Constr. Build. Mater. 127, 724–732 (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Muhammad Nasir
    • 1
  • Megat Azmi Megat Johari
    • 1
  • Moruf Olalekan Yusuf
    • 2
    Email author
  • Mohammed Maslehuddin
    • 3
  • Mamdouh A. Al-Harthi
    • 4
    • 5
  • Hatim Dafalla
    • 3
  1. 1.School of Civil EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Department of Civil EngineeringUniversity of Hafr Al BatinHafr Al BatinSaudi Arabia
  3. 3.Center for Engineering Research, Research InstituteKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  4. 4.Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  5. 5.Center of Research Excellences in Nanotechnology, Research InstituteKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations