Electrochemical Impedance Spectroscopy as a Practical Tool for Monitoring the Carbonation Process on Reinforced Concrete Structures

  • Héctor Herrera HernándezEmail author
  • Francisco González Díaz
  • Gerardo Del Jesús Fajardo San Miguel
  • Julio César Velázquez Altamirano
  • Carlos Omar González Morán
  • Jorge Morales Hernández
Research Article - Chemical Engineering


Carbonation results in a decrease in the pH of the cementation matrix when CO2(g) from the environment diffused into the concrete structure that can cause the loss of passivity condition on the reinforcing steel surface and leads to early failure of concrete by corrosion attack. There are several monitoring techniques to evaluate the process of lowering the pH in the concrete, named carbonation depth progress. In this research, an electrochemical AC impedance spectroscopy (EIS) technique has been used as an effective laboratory tool for monitoring the evolution of the carbonation progress. A comparison with the traditional phenolphthalein colorimetric technique was also discussed here. Particularly, monitoring is achieved by measuring the change in electrical resistance (Rpo) and capacitance (Cpo) of the concrete bulk, which is obtained from the semicircle at high-frequency region of a typical EIS diagram. According to the EIS results, carbonation progress was observed by a significant increase in the diameter of the semicircle, thus demonstrating the increase in resistivity of ions transmission due to blockade of pores by precipitation of CaCO3 compounds. Furthermore, it was possible to predict the specific time at which the carbonation front reaches the steel-rebar interface at low frequency region and possibly starting a considerable corrosion attack. Finally, the results suggested that EIS technique could be considered a practical tool for evaluating the carbonation progress of reinforced concrete structures without causing structural damage, in addition to the sensitivity of this technique with sufficient accuracy to predict the activation of the reinforcing steel.


Carbonation Electrochemical impedance spectroscopy Corrosion Steel reinforcing Phenolphthalein test Concrete 

List of Symbols


Electrochemical impedance spectroscopy


Alternate current


Commercial grade Portland cement


American society of testing materials


Steel–rebar with a circular section and corrugated grade 60, widely used as concrete reinforcement


Relative humidity


Counter electrode


Reference electrode


Working or testing electrode


Equivalent electrical circuit


Constant phase element


Measurement of hydrogen ion concentration of an aqueous solution, related to acidity or alkalinity


Corrosion potential (mV or V)


Carbon dioxide


Carbonic acid


Calcium hydroxide


Sulfuric acid


Calcium chloride


Phenolphthalein indicator


Impedance (Ω)


Real Impedance, component part that relates to the pure resistance (Ω)


Imaginary Impedance, component part that relates to the pure capacitance (Ω)


Resistance of the quantity of electrical current passing through a material (Ω)


Measurement of electric charge of a material (F)


Inductance is a property of an electrical circuit by which an electromotive force is induced due to the variation in current, Henry-H (kg m2 s−2 A−2)


Pores capacitance of concrete (F)


Pores resistance of concrete (Ω)


Double-layer capacitance (F)


Electrical charge in the porous concrete (C)


Solution resistance (Ω)


Charge transfer resistance (Ω)


Denoting the quantity of electrical charge expressed in coulombs (C)


Warburg’s resistance that relates to a diffusion process of ions in solution (Ω s−1/2)


Measurement of the electrical resistivity (Ω m)


The standard unit of electrical resistance


Hertz, unit of frequency


The unit of the electrical charge, capacitance


Unit of frequency (Hz) \(f = \frac{\omega }{2\pi }\)


Angular frequency, \(\omega = 2\pi {\text{f}}\), Hertz (Hz)


Maximum of frequency angular, Hertz (Hz)


Imaginary number, \(j = \sqrt { - 1}\)


The second is the unit of time


Standard unit of angular


The effective diffusion path length


The micron is a unit of measurement in the metric system


Statistical measurement of the data fitted to the linear correlation


Carbonation depth (mm)


Carbonation coefficient

Square root of carbonation time


Coefficient diffusion



The authors would like to acknowledge and express their gratitude to CONACYT for the SNI distinction as research membership and the monthly stipend received. Héctor Herrera Hernández (named as DR.3H) also would like to thank Secretaria de Investigación y Estudios Avanzados SIyEA/UAEM for its financial support through research project (4365/2017/CI). This project was conducted in the (Laboratory of Research in Electrochemical and Corrosion of Industrial Materials at UAEM and Laboratory of Construction Materials at UAM). Finally, the research work group (UAEM-CA-202) “Ingeniería Industrial Avanzada” expresses thanks to PFCE-SEP 2018 program. Finally, DR.3H dedicates this research in memory of professor FLORIAN B. MANSFELD, thanks for his leading and teaching in electrochemistry & corrosion science.


  1. 1.
    Jerga, J.: Physico-mechanical properties of carbonated concrete. Constr. Build. Mater. 18, 645–652 (2004)CrossRefGoogle Scholar
  2. 2.
    Ferrer, B.; Bogas, J.A.; Real, S.: Service life of structural lightweight aggregate concrete under carbonation-induced corrosion. Constr. Build. Mater. 120, 161–171 (2016)CrossRefGoogle Scholar
  3. 3.
    Criado, M.; Sobrados, I.; Bastidas, J.M.; Sanz, J.: Steel corrosion in simulated carbonated concrete pore solution its protection using sol–gel coatings. Prog. Org. Coat. 88, 228–236 (2015)CrossRefGoogle Scholar
  4. 4.
    Diamanti, M.V.; Pérez-Rosales, E.A.; Raffaini, G.; Ganazzoli, F.; Brenna, A.; Pedeferri, M.; Ormellese, M.: Molecular modelling and electrochemical evaluation of organic inhibitors in concrete. Corros. Sci. 100, 231–241 (2015)CrossRefGoogle Scholar
  5. 5.
    Houst, Y.F.; Wittmann, F.G.: Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste. Cem. Concr. Res. 24, 1165–1176 (1994)CrossRefGoogle Scholar
  6. 6.
    Zhang, D.; Shao, Y.: Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete. Constr. Build. Mater. 123, 516–526 (2016)CrossRefGoogle Scholar
  7. 7.
    Johannesson, B.; Utgenannt, P.: Microstructural changes caused by carbonation of cement mortar. Cem. Concr. Res. 31, 925–931 (2001)CrossRefGoogle Scholar
  8. 8.
    Al-Zahrani, M.M.; Maslehuddin, M.; Al-Dulaijan, S.U.; Ibrahim, M.: Mechanical properties and durability characteristics of polymer- and cement-based repair materials. Cement Concr. Compos. 25, 527–537 (2003)CrossRefGoogle Scholar
  9. 9.
    Persson, B.: Experimental studies on shrinkage of high-performance concrete. Cem. Concr. Res. 28, 1023–1036 (1998)CrossRefGoogle Scholar
  10. 10.
    Haque, M.N.; Al-Khaiat, M.; Kayali, O.: Strength and durability of lightweight concrete. Cement Concr. Compos. 26, 307–314 (2004)CrossRefGoogle Scholar
  11. 11.
    Metalssi, O.O.; Ait-Mokhtar, A.; Turcry, P.; Rout, B.: Consequences of carbonation on microstructure and drying shrinkage of a mortar with cellulose ether. Constr. Build. Mater. 34, 218–225 (2012)CrossRefGoogle Scholar
  12. 12.
    González, F.; Fajardo, G.; Arliguie, G.; Juárez, C.A.; Escadeillas, G.: Electrochemical realkalisation of carbonated concrete: an alternative approach to prevention of reinforcing steel corrosion. Int. J. Electrochem. Sci. 6, 6332–6349 (2011)Google Scholar
  13. 13.
    Liu, J.; Qiu, Q.; Chen, X.; Xing, F.; Han, N.; He, Y.: Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete. Cem. Concr. Res. 95, 217–225 (2017)CrossRefGoogle Scholar
  14. 14.
    Wang, W.; Lu, C.; Li, Y.; Yuan, G.; Li, Q.: Effects of stress and high temperature on the carbonation resistance of fly ash concrete. Constr. Build. Mater. 138, 486–495 (2017)CrossRefGoogle Scholar
  15. 15.
    Oliveira, M.A.; Azenha, M.; Lourenço, P.B.; Meneghini, A.; Guimarães, E.T.; Castro, F.; Soares, D.: Experimental analysis of the carbonation and humidity diffusion processes in aerial lime mortar. Constr. Build. Mater. 148, 38–48 (2017)CrossRefGoogle Scholar
  16. 16.
    Neithalath, N.; Jain, J.: Relating rapid chloride transport parameters of concretes to microstructural features extracted from electrical impedance. Cem. Concr. Res. 40, 1041–1051 (2010)CrossRefGoogle Scholar
  17. 17.
    Sánchez, I.; Nóvoa, X.R.; de Vera, G.; Climent, M.A.: Microstructural modifications in Portland cement concrete due to forced ionic migration tests Study by impedance spectroscopy. Cem. Concr. Res. 38, 1015–1025 (2008)CrossRefGoogle Scholar
  18. 18.
    Ribeiro, D.V.; Abrantes, J.C.C.: Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Constr. Build. Mater. 111, 98–104 (2016)CrossRefGoogle Scholar
  19. 19.
    Verbeck, G.: Carbonation of Hydrated Portland Cement. Bulletin 87, Portland Cement Association (PCA), Washington, DC (1958)Google Scholar
  20. 20.
    Castro-Borges, P.; Moreno, E.; Genescá, J.: Influence of marine micro-climates on carbonation of reinforced concrete buildings. Cem. Concr. Res. 30, 1565–1571 (2000)CrossRefGoogle Scholar
  21. 21.
    Moreno, E.; Castro-Borges, P.; Leal, J.: Carbonation-induced corrosion of urban concrete buildings in Yucatan, Mexico. CORROSION/2002, paper 02220, NACE International, Houston, TX (2002)Google Scholar
  22. 22.
    Papadakis, V.; Vayenas, C.; Fardis, M.: Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater. J. 88, 363–373 (1991)Google Scholar
  23. 23.
    Parrott, L.J.: A Review of Carbonation in Reinforced Concrete. BRE Report C/10987. July 1987Google Scholar
  24. 24.
    McPolin, D.O.; Basheer, P.A.M.; Long, A.E.; Grattan, K.T.V.; Sun, T.: New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials. J. Mater. Civ. Eng. 19, 936–946 (2007)CrossRefGoogle Scholar
  25. 25.
    Gu, P.; Xie, P.; Fu, Y.; Beaudoin, J.J.: A.C. impedance phenomena in hydrating cement systems: frequency dispersion angle and pore size distribution. Cem. Concr. Res. 24, 86–88 (1994)CrossRefGoogle Scholar
  26. 26.
    Cabeza, M.; Merino, P.; Miranda, A.; Nóvoa, X.R.; Sánchez, I.: Impedance spectroscopy study of hardened Portland cement paste. Cem. Concr. Res. 32, 881–891 (2002)CrossRefGoogle Scholar
  27. 27.
    Andrade, C.; Soler, L.; Nóvoa, X.R.: Advances in electrochemical impedance measurements in reinforced concrete. Mater. Sci. Forum 192–194, 843–856 (1995)CrossRefGoogle Scholar
  28. 28.
    Gu, P.; Xie, P.; Beaudoin, J.J.; Brousseau, R.: AC impedance spectroscopy: II. Microstructural characterization of hydrating cement-silica fume systems. Cem. Concr. Res. 23, 157–168 (1993)CrossRefGoogle Scholar
  29. 29.
    Sagoe-Crentsil, K.K.; Glasser, F.P.; Irvine, J.T.S.: Electrochemical characteristics of reinforced concrete corrosion as determined by impedance spectroscopy. Brit. Corros. J. 27, 113–118 (1992)CrossRefGoogle Scholar
  30. 30.
    Xu, Z.; Gu, P.; Xie, P.; Beaudoin, J.J.: Application of A.C. impedance techniques in studies of porous cementitious materials: (II): relationship between ACIS behavior and the porous microstructure. Cem. Concr. Res. 23, 853–862 (1993)CrossRefGoogle Scholar
  31. 31.
    Xu, Z.; Gu, P.; Xie, P.; Beaudoin, J.J.: Application of AC impedance techniques in studies of porous cementitious materials: (I): influence of solid phase and pore solution on high frequency resistance. Cem. Concr. Res. 23, 531–540 (1993)CrossRefGoogle Scholar
  32. 32.
    Scuderi, C.A.; Mason, T.O.; Jennings, H.M.: Impedance spectra of hydrating cement pastes. J. Mater. Sci. 26, 349–353 (1991)CrossRefGoogle Scholar
  33. 33.
    McCarter, W.J.; Garvin, S.; Bouzid, N.: Impedance measurements on cement paste. J. Mater. Sci. Lett. 7, 1056–1057 (1988)CrossRefGoogle Scholar
  34. 34.
    Qiu, Q.; Gu, Z.; Xiang, J.; Xiang, J.; Huang, C.; Hong, S.; Xing, F.; Dong, B.: Influence of slag incorporation on electrochemical behaviour of carbonated cement. Constr. Build. Mater. 147, 661–668 (2017)CrossRefGoogle Scholar
  35. 35.
    Villain, G.; Platret, G.: Comparison of two experimental methods to determine carbonation profiles in concrete. In: Malhotra, V.M. (Ed.) Proceedings Supplementary Papers of the 6th CANMET/ACI International Conference on Durability of Concrete, Thessaloniki, Greece, pp. 179–194 (2003)Google Scholar
  36. 36.
    Shi, M.; Chen, Z.; Sun, J.: Determination of chloride diffusivity in concrete by AC impedance spectroscopy. Cem. Concr. Res. 29, 1111–1115 (1999)CrossRefGoogle Scholar
  37. 37.
    Vedalakshmi, R.; Saraswathy, V.; Song, H.W.; Palaniswamy, N.: Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient. Corros. Sci. 51, 1299–1307 (2009)CrossRefGoogle Scholar
  38. 38.
    Chen, J.; Zhang, X.: AC impedance spectroscopy analysis of the corrosion behaviour of reinforced concrete in chloride solution. Int. J. Electrochem. Sci. 12, 5036–5043 (2017)CrossRefGoogle Scholar
  39. 39.
    Andrade, C.; Soler, L.; Alonso, C.; Novoa, X.R.; Keddam, M.: The importance of geometrical considerations in the measurements of steel corrosion in concrete by means of AC impedance. Corros. Sci. 37, 2013–2023 (1995)CrossRefGoogle Scholar
  40. 40.
    Moller, J.: Measurement of degree of carbonation in cement based materials, concrete under severe conditions. In: Sakai, K., Banthia, N., Gjorv, O.E. (eds.) Environment and Loading, vol. 2. Chapman and Hall, Boca Raton (1995)Google Scholar
  41. 41.
    Choi, J.I.; Lee, Y.; Kim, Y.; Lee, B.Y.: Image-processing technique to detect carbonation regions of concrete sprayed with a phenolphthalein solution. Constr. Build. Mater. 154, 451–461 (2017)CrossRefGoogle Scholar
  42. 42.
    Miller, J.B.: Note of the Use of Phenolphthalein as a pH Indicator for Carbonated Concrete. Norwegian Concrete Technologies (NCT), Undated Internal Memorandum (1996)Google Scholar
  43. 43.
    NMX-C-414-ONNCCE: Industria de la construcción—cementos hidráulicos—especificaciones y métodos de prueba, 1983. Normas Mexicanas, Organismo Nacional de Normalización y Certificación de la Construcción y Edificación (1983)Google Scholar
  44. 44.
    Ramli, M.; Dawood, E.T.: Comparative study between flowable high strength mortar and flowing high strength concrete. Concrete Res. Lett. 2, 249–261 (2011)Google Scholar
  45. 45.
    NMX-C-111-ONNCCE: Industria de la Construcción-Agregados para Concreto Hidráulico-Especificaciones y Métodos de Ensayo. Normas Mexicanas, Organismo Nacional de Normalización y Certificación de la Construcción y Edificación ASTM (2017)Google Scholar
  46. 46.
    ASTM A370-07b: Standard test methods and definitions for mechanical testing of steel products. American Society for Testing and Materials, Philadelphia, PA (2007)Google Scholar
  47. 47.
    ASTM C192/C192 M-07: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. American Society for Testing and Materials, Philadelphia, PA (2007)Google Scholar
  48. 48.
    Kosmatka, S.H.; Kerkhoff, B.; Panarese, W.C.: Design and Control of Concrete Mixtures, 14th edn. Portland Cement Association, Skokie (2002)Google Scholar
  49. 49.
    Häkkinen, T.: The influence of slag content on the microstructure, permeability and mechanical properties of concrete: part 2 technical properties and theoretical examinations. Cem. Concr. Res. 23, 518–530 (1993)CrossRefGoogle Scholar
  50. 50.
    Dong, B.Q.; Qiu, Q.W.; Xiang, J.Q.; Huang, C.; Xing, F.; Han, N.; Lu, Y.Y.: Electrochemical impedance spectroscopy measurement and modelling analysis of the carbonation behaviour for cementitious materials. Constr. Build. Mater. 54, 558–565 (2014)CrossRefGoogle Scholar
  51. 51.
    Dong, B.; Qiu, Q.; Xiang, J.; Huang, C.; Xing, F.; Han, N.: Study on the carbonation behavior of cement mortar by electrochemical impedance spectroscopy. Materials 7, 218–231 (2014)CrossRefGoogle Scholar
  52. 52.
    Sydney, H.A.: Introduction to Physical Metallurgy, 2nd edn. McGraw-Hill Book Company, Singapore (1964)Google Scholar
  53. 53.
    Haidemenopoulos, G.N.: Physical Metallurgy Principles and Design, 1st edn. CRC Press, Taylor & Francis Group, LLC, Boca Raton (2018)CrossRefGoogle Scholar
  54. 54.
    Palomar-Pardavé, M.; Romero-Romo, M.; Herrera-Hernández, H.; Abreu-Quijano, M.A.; Likhanova, N.V.; Uruchurtu, J.; Juárez-García, J.M.: Influence of the alkyl chain length of 2 amino 5 alkyl 1,3,4-thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions. Corros. Sci. 54, 231–243 (2012)CrossRefGoogle Scholar
  55. 55.
    Espinoza-Vázquez, A.; Negrón-Silva, G.E.; González-Olvera, R.; Angeles-Beltrán, D.; Herrera-Hernández, H.; Romero-Romo, M.; Palomar-Pardavé, M.: Mild steel corrosión inhibition in HCl by di-alkyl and di-1,2,3-triazole derivatives of uracil and thymine. Mater. Chem. Phys. 145, 407–417 (2014)CrossRefGoogle Scholar
  56. 56.
    Herrera-Hernández, H.; Franco-Tronco, M.I.; Miranda-Hernández, J.G.; Hernández-Sánchez, E.; Espinoza-Vázquez, A.; Fajardo, G.: Gel de aloe-vera como potencial inhibidor de la corrosión del acero de refuerzo estructural. Avances en Ciencias e Ingeniería 6, 9–23 (2015)Google Scholar
  57. 57.
    Mandujano-Ruíz, A.; Morales-Hernández, J.; Herrera-Hernández, H.; Corona-Almazán, L.E.; Juárez-García, J.: Evaluación del comportamiento electroquímico del extracto de nopal (Opuntia Ficus-Indica) como posible inhibidor de corrosión. Rev. Metal. Madr. 53, e108 (2017)CrossRefGoogle Scholar
  58. 58.
    Hsu, C.H.; Mansfeld, F.: Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57, 747–748 (2001)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Laboratorio de Investigación en Electroquímica y Corrosión de Materiales IndustrialesUniversidad Autónoma del Estado de MéxicoAtizapán de ZaragozaMexico
  2. 2.Departamento de MaterialesUniversidad Autónoma MetropolitanaMexico CityMexico
  3. 3.Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  4. 4.Departamento de Ingeniería Química Industrial, ESIQIE, ZacatencoInstituto Politécnico NacionalMexico CityMexico
  5. 5.Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C.Pedro EscobedoMexico

Personalised recommendations