Characterization of Bauxite as a Potential Natural Photocatalyst for Photodegradation of Textile Dye

  • Nurul Jannah Ismail
  • Mohd Hafiz Dzarfan OthmanEmail author
  • Roziana Kamaludin
  • Mohamad Izrin Mohamad Esham
  • Nor Amira Ali
  • Mukhlis A. Rahman
  • Juhana Jaafar
  • Suriani Abu Bakar
Research Article - Chemical Engineering


Previous water treatments used are nondestructive and lead to the formation of new type of pollution. Photocatalytic reaction which induced by illumination of semiconductors in suspension was one of the most promising processes for wastewater treatment due to the ability of providing an interface with the aqueous medium and induce an advanced oxidation process. In this study, Malaysian bauxite has been selected as a new potential candidate for photocatalytic degradation. Bauxite powder was undergone heat treatment ranging from 800 to 1000 °C and then was characterized by field emission scanning electron microscope, X-ray diffraction (XRD), Brunauer–Emmett–Teller, ultraviolet–visible–near infrared spectroscopy and suspension absorbance test to determine the existing components and their composition, structure of the powder, band gap energy as well as the photocatalytic efficiency of bauxite in suspension of various concentrations of Reactive Black 5 (RB5) ranging from 5 to 20 ppm. The finding revealed that bauxite possessed slight changes in terms of XRF composition as well as particle size due to thermal process. This is supported by XRD analysis which showed that phase conversion occurred at 800 °C. Heat-treated bauxite possesses low band gap energy (2.04 eV). The photocatalytic activity of raw bauxite suspension was measured after 360 min illumination, and it proved that there was degradation of 67% and 63% from the initial 5 ppm concentration of RB5 using visible and UV lights, respectively. This finding clearly shows that bauxite exhibits good photocatalytic degradation and hence has a promising potential in removing dyes for industrial wastewater.


Water and wastewater treatment Bauxite Photocatalytic degradation Organic contaminants Thermal treatment 



The authors gratefully acknowledge financial support from the Ministry of Education, Malaysia, under the Higher Institution Centre of Excellence Scheme (Project Number: R.J090301.7846.4J193) and Universiti Teknologi Malaysia under Research University Grant Tier 1 (R.J130000.7746.4J230). The authors would also like to thank Research Management Centre, Universiti Teknologi Malaysia for the technical support.


  1. 1.
    Gupta, V.K.; Ali, I.: Environmental Water: Advances in Treatment, Remediation and Recycling. Elsevier, Amsterdam (2012)Google Scholar
  2. 2.
    Hill, M.K.: Water Pollution. Understanding Environmental Pollution, 3rd edn, pp. 236–285. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  3. 3.
    Ali, Imran; Aboul-Enein, Hassan Y.: Instrumental Methods in Metal Ions Speciation: Chromatography, Capillary Electrophoresis and Electrochemistry. Taylor & Francis Ltd., New York (2006)CrossRefGoogle Scholar
  4. 4.
    Basheer, A.A.: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018)CrossRefGoogle Scholar
  5. 5.
    Abdullah, N.H.M.N.; Sulaiman, L.H.; Zakaria, T.A.; Rahim, D.A.: Potential health impacts of bauxite mining in Kuantan. Malays. J. Med. Sci. 23(3), 1–8 (2016)Google Scholar
  6. 6.
    Jadhav, G.N.; Sharma, N.; Sen, P.: Characterization of Bauxite Deposits from Kachchh Area, Gujarat. J. Geol. Soc. India 80, 351–362 (2012)CrossRefGoogle Scholar
  7. 7.
    Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M.: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31(2), 145–157 (2001)CrossRefGoogle Scholar
  8. 8.
    Lad, R.J.S.J.: Impact of bauxite mining on soil: a case study of bauxite mines at Udgiri, DistKolhapur, Maharashtra State, India. Int. Res. J. Environ. Sci. 4(2), 77–83 (2015)Google Scholar
  9. 9.
    Manikandan, B.; Ramamurthi, V.; Karthikeyan, R.; Sundararaman, T.R.: Mod. Appl. Sci. 3, 131–135 (2009)CrossRefGoogle Scholar
  10. 10.
    Pk, T.: The Mineral Industry of Malaysia. U.S. Geological Survey Minerals Year Minerals Yearbook, vol. 15, pp. 1–7. U.S. Geological Survey (2015)Google Scholar
  11. 11.
    Ali, I.; Aboul-Enein, H.Y.; Kümmerer, K.: Analyses of drugs and pharmaceuticals in the environment. In: Xing, B., Senesi, N., Huang, P.M. (eds.) Biophysico-Chemical Processes of Anthropogenic Organic Compounds in Environmental Systems. IUPAC Sponsored Book Series, pp. 439–462. Wiley, New York (2011)CrossRefGoogle Scholar
  12. 12.
    Ali, I.; Al-Othman, Z.A.; Alwarthan, A.R.: Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 221, 1168–1174 (2016)CrossRefGoogle Scholar
  13. 13.
    Leong, S.K.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.; Wang, H.T.: TiO2 based photocatalytic membranes: a review. J. Membr. Sci. 472, 167–184 (2014)CrossRefGoogle Scholar
  14. 14.
    Ali, I.; Aboul-Enein, H.Y.; Gupta, V.K.: Nano Chromatography and Capillary Electrophoresis: Pharmaceutical and Environmental Analyses. Wiley, Hoboken (2009)Google Scholar
  15. 15.
    Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores. Technol. 77, 247–255 (2001)CrossRefGoogle Scholar
  16. 16.
    Ali, I.: Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J. Mol. Liq. 271, 677–685 (2018)CrossRefGoogle Scholar
  17. 17.
    Gupta, V.K.; Imran, A.: Adsorbents for Water Treatment: Low Cost Alternatives to Carbon, Encyclopaedia of Surface and Colloid Science, vol. 1, pp. 136–166. Marcel Dekker, New York (2002)Google Scholar
  18. 18.
    Li, X.; Ying, G.G.; Su, H.C.; Yang, X.B.; Wang, L.: Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ. Int. 36(6), 557–562 (2010)CrossRefGoogle Scholar
  19. 19.
    Abdullah, N.S.A.; So’aib, S.; Krishnan, J.: Effect of calcination temperature On ZnO/TiO2 composite in photocatalytic treatment of phenol under visible light. Malays. J. Anal. Sci. 21(1), 173–181 (2017)CrossRefGoogle Scholar
  20. 20.
    Lenie, S.; Cortvrindt, R.; Eichenlaub-Ritter, U.; Smitz, J.: Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat. Res. 651, 71–81 (2008)CrossRefGoogle Scholar
  21. 21.
    Lee, J.; Kim, J.; Choi, W.: ACS Symposium Series 1071, TiO2 Photocatalysis for the Redox Conversion of Aquatic Pollutants, pp. 199–222 (2011)Google Scholar
  22. 22.
    Nakataa, K.; Fujishimaa, A.: TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13, 169–189 (2012)CrossRefGoogle Scholar
  23. 23.
    Ali, I.; Al-Othman, Z.A.; Alwartha, A.: Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J. Mol. Liq. 219, 858–864 (2016)CrossRefGoogle Scholar
  24. 24.
    Kamaludin, R.; Othman, M.H.D.; Kadir, S.H.S.A.; Ismail, A.F.; Rahman, M.A.; Jaafar, J.: Visible-light-driven photocatalytic N-doped TiO2 for degradation of bisphenol A (BPA) and reactive black 5 (RB5). Dye Water Air Soil Pollut. 229, 11 (2018)CrossRefGoogle Scholar
  25. 25.
    Sugiyana, D.; Handajani, M.; Kardena, E.; Notodarmojo, S.: Synthesis of TiO2 nanofiber-nanoparticle composite catalyst and its photocatalytic decolorization performance of reactive black 5 dye from aqueous solution. J. Eng. Technol. Sci. 49(3), 340 (2017)CrossRefGoogle Scholar
  26. 26.
    Saroyan, H.; Kyzas, G.Z.; Deliyanni, E.A.: Effective dye degradation by graphene oxide supported manganese oxide. Processes 7(1), 40 (2019). CrossRefGoogle Scholar
  27. 27.
    Habibi, M.H.; Hassanzadeh, A.; Mahdavi, S.: The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. J. Photochem. Photobiol. A Chem. 172, 89–96 (2005)CrossRefGoogle Scholar
  28. 28.
    Shakhashiri, B.Z.: “Chemical of The Week”: Aluminium. University of Wisconsin, Madison (2012)Google Scholar
  29. 29.
    Bellardita, M.; Di Paolaa, A.; Marcìa, G.; Palmisanoa, L.; Cassarb, L.; Borsac, M.: Photocatalytic activity of TiO2/SiO2 systems. J. Hazard. Mater. 174, 707–713 (2010)CrossRefGoogle Scholar
  30. 30.
    Luna-Velasco, A.; Sieera-Alvarez, R.; Castro, B.; Field, J.A.: Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zero-valent iron. Biotechnol. Bioeng. 107, 933–942 (2010). CrossRefGoogle Scholar
  31. 31.
    Wang, C.; Chen, S.-H.: Factors influencing particle agglomeration during solid-state sintering. Acta Mech. Sin. 28(3), 711–719 (2012)CrossRefGoogle Scholar
  32. 32.
    Cividanes, L.; Campos, T.M.B.; Liana, R.; Thim, G.: Review of mullite synthesis routes by sol–gel method. J. Sol-Gel Sci. Technol. 55(1), 111–125 (2010)CrossRefGoogle Scholar
  33. 33.
    Ivanova, S.; et al.: Synthesis and application of layered titanates in the photocatalytic degradation of phenol. Appl. Catal. B 163, 23–29 (2015)CrossRefGoogle Scholar
  34. 34.
    Ahmed, M.A.; et al.: Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloys Compd. 553, 19–29 (2013)CrossRefGoogle Scholar
  35. 35.
    Fujishima, A.; Zhang, X.; Tryk, D.: Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrog. Energy 32(14), 2664–2672 (2007)CrossRefGoogle Scholar
  36. 36.
    Oun, A.; Tahri, N.; Mahouche-Chergui, S.; Carbonnier, B.; Majumdar, S.S.S.; Sahoo, G.C.; Amar, R.B.: Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support. Characterization and application to dye removal. Sep. Purif. Technol. 188, 126–133 (2017)CrossRefGoogle Scholar
  37. 37.
    Chen, G.; Ji, S.; Sang, Y.; Chang, S.; Wang, Y.; Hao, P.; Claverie, J.; Liu, H.; Yu, G.: Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV–visible light photocatalytic activity. Nanoscale 2015(7), 3117–3125 (2017)CrossRefGoogle Scholar
  38. 38.
    Anandan, S.; et al.: An overview of semi-conductor photocatalysis: modification of TiO2 nanomaterials. Solid State Phenom. 162, 239–260 (2010)CrossRefGoogle Scholar
  39. 39.
    Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X.: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014)CrossRefGoogle Scholar
  40. 40.
    Kamaludin, R.; Othman, M.H.D.; Kadir, S.H.S.A.; Ismail, A.F.; Rahman, M.A.; Jaafar, J.: Visible-light-driven photocatalytic N-doped TiO2 for degradation of bisphenol A (BPA) and reactive black 5 (RB5). Dye Water Air Soil Pollut. 229(11), 5282–5290 (2018)Google Scholar
  41. 41.
    Etacheri, V.; et al.: Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C Photochem. Rev. 25, 1–29 (2015). CrossRefGoogle Scholar
  42. 42.
    Han, C.; Yang, M.-Q.; Weng, B.; Xu, Y.-J.: Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys. Chem. Chem. Phys. 16, 16891 (2014). CrossRefGoogle Scholar
  43. 43.
    Butt, C.R.M.; Lintern, M.J.; Arand, R.R.: Evolution of regoliths and landscapes in deeply weathered terrain—implications for geochemical exploration. Ore Geol. Rev. 16, 167–183 (2010)CrossRefGoogle Scholar
  44. 44.
    Batzill, M.: Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ. Sci. 4, 3275–3286 (2011)CrossRefGoogle Scholar
  45. 45.
    Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M.: Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci. Rep. 4, Article number: 4043 (2014)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Nanotechnology Research Centre, Faculty of Science and MathematicsUniversiti Pendidikan Sultan IdrisTanjung MalimMalaysia

Personalised recommendations