Arabian Journal for Science and Engineering

, Volume 44, Issue 10, pp 8629–8644 | Cite as

Replacement of Limestone with Volcanic Stone in Asphalt Mastic Used for Road Pavement

  • Haibin LiEmail author
  • Wenjie Wang
  • Wenbo Li
  • Assaad Taoum
  • Guijuan Zhao
  • Ping Guo
Research Article - Civil Engineering


Volcanic stones are a kind of natural materials, and they will occupy large amounts of land resources which brings a lot of inconvenience to local residents and traffic. Meanwhile, the annual demand for limestone in the world is about 1.2 billion tons and high-quality limestone has low natural resources and low production volume. In order to comply with the current green eco-friendly pavement concept, this paper aims to study the use of volcanic rocks in place of limestone in road pavement construction as a way of utilizing available natural mineral resource to reduce the problematic over-dependence on limestone. In this paper, asphalt mastics with different dosages of ground volcanic stone and limestone powder were produced. Combining macro and micro-methods, the applicability of volcanic stone was analyzed and evaluated from the aspects of basic performance experiments, X-ray photoelectron spectroscopy, scanning electron microscopy and infrared spectroscopy. The results clearly showed that the volcanic stone powder could get better distribution and better high-temperature performance in the asphalt mastic than limestone powder. It contained Si and much higher content of SiO2, Al2O3, Fe2O3, Na2O and K2O which promoted chemical reactions with the asphalt, making it more compatible with asphalt than limestone powder. Based on the results of this study, it can be concluded that volcanic stone could effectively replace some limestone usage in the asphalt pavement field which will in return reduce the occupation of land resources and provide a new choice for the limestone.


Road asphalt Asphalt mastic Volcanic stone Limestone powder Asphalt mastic properties 



The project was supported by the Shaanxi Science and Technology Project (No. 2018SF-364), Shaanxi Transportation Science and Technology Project (No. 17-12K), and the Fundamental Research Funds for the Central Universities of China (Nos. 310831153409, 300102218502 and 300102318401).


  1. 1.
    Zhang, H.; Guo, G.; Gao, Y.; et al.: Effects of ZnO particle size on properties of asphalt and asphalt mixtures. Constr. Build. Mater. 159, 578–586 (2018)CrossRefGoogle Scholar
  2. 2.
    Enomoto, K.; Kikuchi, M.; Narumi, A.; et al.: Surface modifier-free organic-inorganic hybridization to produce optically transparent and highly refractive bulk materials composed of epoxy resins and ZrO2 nanoparticles. ACS Appl. Mater. Interfaces 10(16), 13985–13998 (2018)CrossRefGoogle Scholar
  3. 3.
    Latifi, H.; Hayati, P.: Evaluating the effects of the wet and simple processes for including carbon Nanotube modifier in hot mix asphalt. Constr. Build. Mater. 164, 326–336 (2018)CrossRefGoogle Scholar
  4. 4.
    Zhang, H.; Hui, L.; Yi, Z.; et al.: Performance enhancement of porous asphalt pavement using red mud as alternative filler. Constr. Build. Mater. 160, 707–713 (2018)CrossRefGoogle Scholar
  5. 5.
    Rui Xiong, L.; Wang, X.Y.; Yang, F.; Sheng, Y.; Guan, B.; Chen, H.: Experimental investigation on related properties of asphalt mastic with activated coal gangue as alternative filler. Int. J. Pavement Res. Technol. 120, 210–215 (2018). Google Scholar
  6. 6.
    Yang, C.; Xie, J.; Zhou, X.; et al.: Performance evaluation and improving mechanisms of diatomite-modified asphalt mixture. Materials 11(5), 686 (2018)CrossRefGoogle Scholar
  7. 7.
    Mistry, R.; Karmakar, S.; Roy, T.K.: Experimental evaluation of rice husk ash and fly ash as alternative fillers in hot-mix asphalt. Road Mater. Pavement Des. 5, 1–12 (2018)Google Scholar
  8. 8.
    Jamshidi, A.; Hasan, M.R.M.; Mei, T.L.: Comparative study on engineering properties and energy efficiency of asphalt mixes incorporating fly ash and mastic. Constr. Build. Mater. 168, 295–304 (2018)CrossRefGoogle Scholar
  9. 9.
    Franesqui, M.A.; Yepes, J.; García-González, C.: Improvement of moisture damage resistance and permanent deformation performance of asphalt mixtures with marginal porous volcanic aggregates using crumb rubber modified bitumen. Constr. Build. Mater. 201, 328–339 (2019)CrossRefGoogle Scholar
  10. 10.
    Liu, X.; Zhang, M.; Shao, L.; et al.: Effect of volcanic ash filler on thermal viscoelastic property of SBS modified asphalt mastic. Constr. Build. Mater. 190, 495–507 (2018)CrossRefGoogle Scholar
  11. 11.
    Wanqiu Liu, X.; Liu, Z.W.; et al.: High temperature deformation investigation of asphalt mixture with nanosized volcanic ash fillers using optical fiber sensor. Measurement 140, 171–181 (2019). CrossRefGoogle Scholar
  12. 12.
    Juan, H.: Study on volcanic ash and SBS composite modified asphalt mixture road performance and modification mechanism. Highway Eng. (2016)Google Scholar
  13. 13.
    Chen, Z.G.; Chen, Z.N.; Wu, J.T.; Yao, H.C.: Pavement performance research on fine volcanic ash modified asphalt mastic and mixture. Adv. Mater. Res. 255–260, 5 (2011). CrossRefGoogle Scholar
  14. 14.
    Diab, A.; et al.: Investigating influence of mineral filler at asphalt mixture and mastic scales. Int. J. Pavement Res. Technol. 11, 213–224 (2018). CrossRefGoogle Scholar
  15. 15.
    Hu, X.; Ning, W.; Pan, P.; et al.: Performance evaluation of asphalt mixture using brake pad waste as mineral filler. Constr. Build. Mater. 138, 410–417 (2017)CrossRefGoogle Scholar
  16. 16.
    Qureshi, T.; Kanellopoulos, A.; Altabbaa, A.: Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Constr. Build. Mater. 121, 629–643 (2016). CrossRefGoogle Scholar
  17. 17.
    Kong, D.; Xiao, Y.; Shaopeng, W.; et al.: Comparative evaluation of designing asphalt treated base mixture with composite aggregate types. Constr. Build. Mater. 156, 819–827 (2017)CrossRefGoogle Scholar
  18. 18.
    Chen, D.H.; Won, M.: CAM and SMA mixtures to delay reflective cracking on PCC pavements. Constr. Build. Mater. 96, 226–237 (2015). CrossRefGoogle Scholar
  19. 19.
    Cong, P.; Chen, S.; Chen, H.: Effects of diatomite on the properties of asphalt binder. Constr. Build. Mater. 30, 495–499 (2012). CrossRefGoogle Scholar
  20. 20.
    Chao, Y.; Jun, X.; Xiaojun, Z.; Quantao, L.; Ling, P.: Performance evaluation and improving mechanisms of diatomite-modified asphalt mixture. Materials (Basel, Switzerland) (2018). Google Scholar
  21. 21.
    Hou, X.; Lv, S.; Zheng, C.; et al.: Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 121, S0263224118301714 (2018)CrossRefGoogle Scholar
  22. 22.
    Rui, X.; Lu, W.; Yang, X.; et al.: Experimental investigation on related properties of asphalt mastic with activated coal gangue as alternative filler. Int. J. Pavement Res. Technol. 2018, S1996681417302596 (2018)Google Scholar
  23. 23.
    Qu, X.; Liu, Q.; Wang, C.; et al.: Effect of co-production of renewable biomaterials on the performance of asphalt binder in macro and micro perspectives. Materials 11(2), 244 (2018)CrossRefGoogle Scholar
  24. 24.
    Chen, H.; Li, L.; Zhang, Z.; Wang, B.: Temperature susceptibility analysis of asphalt binders. J. Chang’an Univ. (Nat. Sci. Edit.) 26, 8–11 (2006). Google Scholar
  25. 25.
    Robert, O.R.; ASCE M; Robert, L.: Method to predict temperature susceptibility of an asphalt binder. J. Mater. Civ. Eng. 52, 246–252 (2002). Google Scholar
  26. 26.
    Li, C.; Wu, D.; Wang, Z.; Wang, L.: High and low temperature rheological properties of polyphosphoric acid modified asphalt binder. J. Funct. Mater. 122, 122 (2016). Google Scholar
  27. 27.
    Chuanfeng, Z.; Yupeng, F.; Zhuang, M.; Xue, Y.: Influence of mineral filler on the low-temperature cohesive strength of asphalt mastic. Cold Reg. Sci. Technol. 133, 1–6 (2017). CrossRefGoogle Scholar
  28. 28.
    Wang, W.; Cheng, Y.; Tan, G.; Liu, Z.; Shi, C.: Laboratory investigation on high- and low-temperature performances of asphalt mastics modified by waste oil shale ash. J. Mater. Cycles Waste Manag. (2018). Google Scholar
  29. 29.
    Cardone, F.; Frigio, F.; Ferrotti, G.; Canestrari, F.: Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics. J. Traffic Transp. Eng. (Engl. Edit.) 2(6), S2095756415305730 (2015). Google Scholar
  30. 30.
    Miró, R.; Martínez, A.H.; Pérez-Jiménez, F.E.; Botella, R.; Álvarez, A.: Effect of filler nature and content on the bituminous mastic behaviour under cyclic loads. Constr. Build. Mater. 132(Complete), 33–42 (2017). CrossRefGoogle Scholar
  31. 31.
    Hakimzadeh, S.; Behnia, B.; Buttlar, W.G.; Reis, H.: Implementation of nondestructive testing and mechanical performance approaches to assess low temperature fracture properties of asphalt binders. Int. J. Pavement Res. Technol. 10(3), 219 (2017). CrossRefGoogle Scholar
  32. 32.
    Cheng, Z.; Hui, P.; Wen, L.; et al.: Conformation transitions of thermoresponsive dendronized polymers across the lower critical solution temperature. Macromolecules 49(3), 414 (2016)Google Scholar
  33. 33.
    Eliyahu, I.; Horowitz, Y.S.; Oster, L.; et al.: Probing the defect nanostructure of helium and proton tracks in LiF:Mg, Ti using optical absorption: Implications to track structure theory calculations of heavy charged particle relative efficiency. Nucl. Instrum. Methods Phys. Res. 349, 209–220 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Haibin Li
    • 1
    Email author
  • Wenjie Wang
    • 1
  • Wenbo Li
    • 1
  • Assaad Taoum
    • 2
  • Guijuan Zhao
    • 1
  • Ping Guo
    • 3
  1. 1.School of Architecture and Civil EngineeringXi’an University of Science and TechnologyXi’anChina
  2. 2.School of EngineeringUniversity of TasmaniaHobartAustralia
  3. 3.Xi’an Highway Research InstituteXi’anChina

Personalised recommendations