Advertisement

Influence of the Release Kinetics of Chemical Species on the Sustainability of Stabilized/Solidified Materials with Hydraulic Binder Subjected to Chemically Aggressive Environments

  • Cherif BelebchoucheEmail author
  • Karim Moussaceb
  • Abdelkader Hammoudi
Research Article - Chemical Engineering
  • 1 Downloads

Abstract

The objective of this study is the evaluation of the influence of the release kinetics of chemical species on the sustainability of stabilized/solidified cementitious materials subjected to chemically aggressive environments. To do this, two formulations types (paste and mortar) were made with different waste/cement ratios. The waste used comes from the cutlery unit of the Algerian industry in the form of hydroxide sludge. Several analysis and experimental protocols were used, namely: XRD, TGA, BET, FAAS, SEM–EDX, aqua regia, MLT, WAC and scratching in order to assess: (i) the effect of the addition of cutlery hazardous waste on physical and mechanical properties of the formulations investigated, (ii) and degradation of formulations (F4M and F4P) which present optimal physical and mechanical properties. TGA results show that waste addition causes the incomplete hydration of cement. The results obtained for MLT test during 18 months of release, show the effectiveness of stabilization/solidification process, by reducing the polluting potential of the waste in the two study media. The coupling of XRD–aqua regia–SEM–EDX–TGA allowed determination of the degraded area of stabilized/solidified materials; this degradation is attributed to the dissolution and/or precipitation of hydrates. Degradation of mortar F4M was less significant relative to the cement paste F4P; this is due to the addition of standard sand which reduces the porosity of the material. According to the low levels of leached elements, it does not record any significant degradation in the materials studied.

Keywords

Hazardous waste Stabilization/solidification Aggressive environments Scratching system Degradation 

References

  1. 1.
    London, C.; Navaroo, A.: Les déchets. Lamy environnement, Paris (1997)Google Scholar
  2. 2.
    Nomura, Y.; Fujiwara, K.; Terada, A.; Nakai, S.; Hosomi, M.: Prevention of lead leaching from fly ashes by mechanochemical treatment. Waste Manag 30, 1290–1295 (2010)CrossRefGoogle Scholar
  3. 3.
    Pablos, M.V.: Hazardous Waste. Reference Module in Biomedical Sciences Encyclopedia of Toxicology, 3rd edn, pp. 823–826. Elsevier, Amsterdam (2014)Google Scholar
  4. 4.
    Rozumová, L.; Motyka, O.; Čabanová, K.; Seidlerová, J.: Stabilization of waste bottom ash generated from hazardous waste incinerators. J. Environ. Chem. Eng. 3, 1–9 (2015)CrossRefGoogle Scholar
  5. 5.
    Wiles, C.C.: A review of solidification/stabilization technology. J. Hazard. Mater. 14, 5–21 (1987)CrossRefGoogle Scholar
  6. 6.
    Conner, J.R.: Chemical Fixation and Solidification of Hazardous Wastes. Van Nostrand, Reinhold, New York (1990)Google Scholar
  7. 7.
    Planel, D.: Les effets couplés de la précipitation d’espèces secondaires sur le comportement mécanique de la dégradation des bétons. Ph.D. Dissertation, University of Marne la Vallée (2002)Google Scholar
  8. 8.
    Camps, G.: Etude des interactions chemo-mécaniques pour la simulation du cycle de vie d’un élément de stockage en béton. Ph.D. Dissertation, University of Paul Sabatier – Toulouse III (2008)Google Scholar
  9. 9.
    Rozière, H.; Loukili, A.; El-Hachem, R.; Grondin, F.: Durability of concrete exposed to leaching and external sulphate attacks. Cem. Concr. Res. 39, 1188–1198 (2009)CrossRefGoogle Scholar
  10. 10.
    Brunetaud, X.; Khelifa, M.R.; El-Mukthar, M.: Size effect of concrete samples on the kinetics of external sulfate attack. Cem. Concr. Compos. 34, 370–376 (2012)CrossRefGoogle Scholar
  11. 11.
    Alexander, M.; Bertron, A.; De-Belie, N.: Performance of Cement-Based Materials in Aggressive Aqueous Environments. Springer, Dordrecht (2013)CrossRefGoogle Scholar
  12. 12.
    Diab, A.M.; Elyamany, H.E.; Abd-Elmoaty, A.M.; Shalan, A.H.: Prediction of concrete compressive strength due to long term sulfate attack using neural network. Alex. Eng. J. 53, 627–642 (2014)CrossRefGoogle Scholar
  13. 13.
    Ministère de l’Aménagement du Territoire et de l’Environnement-Algérie: Principaux textes législatifs et réglementaires. MATE, Algeria (2014)Google Scholar
  14. 14.
    Belebchouche, C.; Moussaceb, K.; Tahakourt, A.; Aït-Mokhtar, A.: Parameters controlling the release of hazardous waste (Ni2+, Pb2+ and Cr3+) solidified/stabilized by cement-CEM I. Mater. Struct. 48, 2323–2338 (2015)CrossRefGoogle Scholar
  15. 15.
    AFNOR: Caractérisation du déchet -Essai de lixiviation d’un déchet solide initialement massif ou généré par un procédé de solidification NF X31-211 (2012)Google Scholar
  16. 16.
    AFNOR: Méthodes d’essais des ciments: Partie 1: détermination des résistances mécaniques NF EN 196-1 (2006)Google Scholar
  17. 17.
    Belebchouche, C.; Moussaceb, K.; Hammoudi, A.; Amouri, C.: Modeling and evaluation of the performance of the stabilization/solidification process of hazardous compound PbO by toxicity characteristic leaching procedure test. Romanian J. Mater. 48, 260–267 (2018)Google Scholar
  18. 18.
    Omikrine, O.; Aït-Mokhtar, A.: A proposed methodology for quantitative investigation of carbonation in polymer-modified mortars. Exp. Tech. 33, 59–65 (2009)CrossRefGoogle Scholar
  19. 19.
    AFNOR: Méthodes d’essais des ciments – Détermination du retrait et du gonflement NF P15-433. (1994)Google Scholar
  20. 20.
    Wirth, E.; Guitteny, F.; Mathonat, C.: Thermogravimétrie. Tech. Ing. P1260, 243 (2014)Google Scholar
  21. 21.
    Loukili, A.: Etude du retrait et du fluage de béton à ultra-hautes performances. Ph.D. Dissertation, Ecole Centrale de Nantes (1996)Google Scholar
  22. 22.
    Mounanga, P.: Étude expérimentale du comportement de pâtes de ciment au très jeune âge: hydratation, retrait, propriétés thermophysiques. Ph.D. Dissertation, University of Nantes (2003)Google Scholar
  23. 23.
    Environment Agency EA NEN 7375-2004: leaching characteristics of moulded or monolithic building and waste materials: determination of leaching of inorganic components with the diffusion test ‘the tank test’ based on a translation of the Netherlands Normalisation Institute Standard, Version 1.0 (2005)Google Scholar
  24. 24.
    Wang, J.G.: Sulfate attack on hardened cement paste. Cem. Concr. Res. 24, 735–742 (1994)CrossRefGoogle Scholar
  25. 25.
    Yang, S.; Zhongzi, X.; Mingshu, T.: The process of sulfate attack on cement mortars. Adv. Cem. Based Mater. 4, 1–5 (1996)CrossRefGoogle Scholar
  26. 26.
    Cranck, J.: The mathematics of diffusion. Clarendon Press, Oxford (1975)Google Scholar
  27. 27.
    AFNOR: Qualité des sols-Sols, sédiments-Mise en solution par attaque acide NF X 31-147 (1996)Google Scholar
  28. 28.
    Bouhamou, N.; Belas, N.; Mesbah, H.; Jauberthie, R.; Ouali, A.; Mebrouki, A.: Influence des rapports eau/ciment et fines/ciment sur le comportement à l’état durci du béton autoplaçant à base de matériaux locaux algériens. Can. J. Civ. Eng. 36, 1195–1206 (2009)CrossRefGoogle Scholar
  29. 29.
    Jaouadi, I.: Etude numérique et expérimentale du retrait endogène de la pâte de ciment au jeune âge. Dissertation, thèse de doctorat, Ecole Polytechnique Fédérale de Lausanne (2008)Google Scholar
  30. 30.
    Belebchouche, C.: Etude expérimentale du comportement des matériaux cimentaires exposés à des environnements chimiquement agressifs et modélisation de la lixiviation. Ph.D. Dissertation, University of Bejaia (2015)Google Scholar
  31. 31.
    Tazawa, E., Miyazawa, S.: Effect of constituents and curing conditions on autogenous shrinkage of concrete. In: Proceeding of the International Workshop on Autogenous Shrinkage of Concrete, Hiroshima (1998)Google Scholar
  32. 32.
    Kelham, S.: The effect of cement composition and fineness on expansion associated with delayed ettringite. Cem. Concr. Compos. 18, 171–179 (1996)CrossRefGoogle Scholar
  33. 33.
    Escadeillas, G.; Aubert, J.E.; Maximiliano, S.; William, P.: Some factors affecting delayed ettringite formation in heat-cured mortars. Cem. Concr. Res. 37, 1445–1452 (2007)CrossRefGoogle Scholar
  34. 34.
    Leklou, N.: Contribution à la connaissance de la réaction sulfatique interne. Ph.D. Dissertation, University of Paul-Sabatier Toulouse III (2008)Google Scholar
  35. 35.
    Amini, H.R.; Saeedi, M.; Baghvand, A.: Solidification/stabilization of heavy metals from air heater washing wastewater treatment in thermal power plants. Int. J. Environ. Res. 2, 297–306 (2008)Google Scholar
  36. 36.
    Chen, Q.Y.; Hills, C.D.; Tyrer, M.; Slipper, I.; Shen, H.G.; Brough, A.: Characterisation of products of tricalcium silicate hydration in the presence of heavy metals. J. Hazard. Mater. 147, 817–825 (2007)CrossRefGoogle Scholar
  37. 37.
    Belebchouche, C.; Moussaceb, K.; Aït-Mokhtar, A.: Evaluation of the encapsulation of nickel, chromium and lead-rich wastes in cement matrices by TCLP test. Eur. J. Environ. Civ. Eng. 20, 711–724 (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Cherif Belebchouche
    • 1
    • 2
    Email author
  • Karim Moussaceb
    • 2
  • Abdelkader Hammoudi
    • 2
  1. 1.Département de Génie Civil, Faculté des Sciences de la TechnologieUniversité des Frères Mentouri Constantine 1ConstantineAlgeria
  2. 2.Laboratoire de Technologie des Matériaux et de Génie des Procédés, Faculté de TechnologieUniversité de BejaiaBejaiaAlgeria

Personalised recommendations