Effective Dephenolation of Effluent from Petroleum Industry Using Ionic-Liquid-Induced Hybrid Adsorbent

  • M. N. Abonyi
  • C. O. AniagorEmail author
  • M. C. Menkiti
Research Article - Chemical Engineering


In this study, naturally heated clay (NHC) was complexed with synthesized ionic liquid (1-ethyl-3-methyl imidazolium bromide solution (EMIB)) to form NHC/EMIB composite. The effectiveness of NHC/EMIB composite in comparison with naturally heated clay (NHC) as an eco-friendly adsorbent for dephenolation of petroleum effluent was investigated. The adsorbents were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. Batch mode experiments were conducted to ascertain the effect of process variables on adsorption. Removal efficiencies of 81.70% and 91.7% were obtained for NHC and NHC/EMIB composite, respectively, at 25 min, 308 K, pH 4.0 and 150 µm. The linear and nonlinear isotherm data fitted best to the Langmuir model for both adsorbent, while the linear and nonlinear kinetic data fitted best to pseudo-second-order and pseudo-first-order models for both adsorbents. The estimated average thermodynamic parameters (ΔG0 = − 9.653 kJ/mol, ΔH0 = –28.295 kJ/mol and ΔS0 = –46.395 kJ/mol) revealed the feasibility, exothermic nature and spontaneity, respectively, of the studied adsorption system.


1-Ethyl-3-methyl imidazolium bromide Hybridized adsorbent Petroleum effluent Dephenolation Isotherm 

List of Symbols


Temkin constant, L/g


Equilibrium concentration, mg/L


Initial concentration, mg/L


Concentration at time t, mg/L


Free energy change, KJ/mol


Enthalpy change, KJ/mol


Pseudo-first-order kinetic constant


Pseudo-second-order kinetic constant


Freundlich constants, L/g


Total mass of the adsorbent, g


Freundlich constants


Adsorption capacity, mg/g

\( q_{\text{e}} \)

Adsorption capacity at equilibrium, mg/g

\( q_{\text{m}} \)

Maximum adsorption capacity for a complete monolayer coverage

\( q_{\text{t}} \)

Adsorption capacity at time, mg/g


Universal gas constants, j/mol k


Dimensional separation factor


Entropy change, J/mol k


Time, min


Temperature, K


Weight of adsorbent



Average relative error


Chemical oxygen demand


Dissolved oxygen


The sum of absolute errors


1-Ethyl-3-methyl imidazolium bromide


The hybrid error function


National Environmental Standards and Regulation Enforcement Agency


Pseudo-first order


Pseudo-second order


Root-mean-square error


Total dissolved solids


Total suspended solids


United State Public Health


World Health Organization

Supplementary material

13369_2019_4000_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 32 kb)


  1. 1.
    Udin, M.T.; Islam, M.S.; Abedin, M.Z.: Adsorption of phenol from aqueous solution by water hyacinth ash. Journal of Engineering and Applied Science 2(2), 11–14 (2007)Google Scholar
  2. 2.
    Okasha, A.Y.; Ibrahim, G.H.: Phenol removal from aqueous systems by sorption of using some local waste materials. EJEAF CHE. 9(4), 796–807 (2010)Google Scholar
  3. 3.
    Sunil, J.; Kulkarni, D.; Jayant, P.K.: Review on research for removal of phenol from Wastewater. Int. J. Sci. Res. Publ. 3(4), 34–39 (2013)Google Scholar
  4. 4.
    Kapoor, A.; Viraraghavan, T.; Cullimore, D.R.: Removal of heavy metals using the Fungus Aspergillus niger. Biores. Technol. 70(1), 95–104 (1999)Google Scholar
  5. 5.
    Kumaran, P.; Paruchuri, Y.L.: Kinetics of phenol biotransformation. Water Res. 31, 11–22 (1996)Google Scholar
  6. 6.
    Balasurbramanian, A.; Venkatesan, S.: Removal of phenolic compounds from aqueous Solutions by emulsion liquid membrane containing Ionic Liquid (BMIM)+(PF6)—in Tributyl Phosphate. Desalination 289, 27–34 (2012)Google Scholar
  7. 7.
    Bazrafshan, E.; Amirian, P.; Mahvi, A.H.; Ansari-Moghaddam, A.: Application of adsorption process for phenolic compounds removal from aqueous environments: a systematic review. Global NEST Journal 18(1), 146–163 (2016)Google Scholar
  8. 8.
    Jung, M.; Ahn, K.; Lee, Y.; Kim, K.; Paeng, I.R.; Rhee, J.; Park, J.T.; Paeng, K.: Evaluation on the adsorption capabilities of new chemically modified polymeric adsorbents with protoporphyrin IX. J. Chromatogr. A 917, 87–93 (2001)Google Scholar
  9. 9.
    Chen, Y.M.; Tsao, T.M.; Wang, M.K.; Removal of crystal violet and methylene blue from aqueous solution using soil nano-clays. In: International Conference on Environment Science and Engineering, IPCBEE, IACSIT Press, Singapore, pp. 252–254 (2011)Google Scholar
  10. 10.
    Sheng, G.; Dong, H.: Li, Y; Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. J. Environ. Radioact. 113, 108–115 (2012)Google Scholar
  11. 11.
    Menkiti, M.C.; Abonyi, M.N.; Aniagor, C.O.: Process equilibrium, kinetics and mechanisms of ionic-liquid induced dephenolation of petroleum effluent. Water Conserv. Sci. Eng. 3, 205–220 (2018). Google Scholar
  12. 12.
    Cañizares, P.; Carmona, M.; Baraza, O.; Delgado, A.; Rodrigo, M.: Adsorption equilibrium of phenol onto chemically modified activated carbon F400. J. Hazard. Mater. 131, 243–248 (2006)Google Scholar
  13. 13.
    Dong, H.; Xingxiao, L.; Yu, C.; Xin, Y.; Xibang, C.; Ling, X.; Jing, P.; Jiugiang, L.; Maolin, Z.: Polymeric ionic liquids gels composed of hydrophilic and hydrophobic units for high adsorption selectivity of perrhenate. The royal society of chemistry 8, 9311–9319 (2018)Google Scholar
  14. 14.
    Aniagor, C.O.; Menkiti, M.C.: Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. J. Env. Chem. Eng. 6, 2105–2118 (2018)Google Scholar
  15. 15.
    Madejova, J.: FTIR techniques in clay mineral studies. Vib. Spectrosc. 31, 1–10 (2003)Google Scholar
  16. 16.
    Chang, R.: Physical Chemistry for the Biosciences. University Science Books, NY, USA (2005)Google Scholar
  17. 17.
    Nayak, P.S.; Singh, B.K.: Removal of phenol from aqueous solutions by sorption on low cost clay. Desalination 207, 71–79 (2007)Google Scholar
  18. 18.
    Smithaa, T.; Thirumalisamy, S.; Manonani, S.: Equilibrium and kinetics study of adsorption of crystal violet onto the peel of Cucumis sativa fruit from aqueous solution. E-Journal of Chemistry 9(3), 1091–1098 (2012)Google Scholar
  19. 19.
    Siboni, M.S.; Jafari, S.J.; Farrokhi, M.; Yang, J.K.: Removal of phenol from aqueous solutions by activated red mud: equilibrium and kinetics studies. Environ. Eng. Res. 18(4), 247–252 (2013)Google Scholar
  20. 20.
    Verma, A.; Chakraborty, S.; Basu, J.K.: Adsorption study of hexavalent chromium using tamarind hull based adsorptions. Sep. Purify. Technol. 50, 336–341 (2006)Google Scholar
  21. 21.
    Nagda, G.K.; Diwan, A.M.; Ghole, V.S.: Potential of Tendu leaf refuse for phenol removal in aqueous systems. Appl. Ecol. Environ. Res. 5(2), 1–9 (2007)Google Scholar
  22. 22.
    Liu, X.; Pinto, N.G.: Ideal adsorbed phase model for adsorption of phenolic compounds on activated carbon. Carbon 35, 1387–1397 (1997)Google Scholar
  23. 23.
    Banat, F.A.; Al-Bashir, B.S.; Hayajneh, O.: Adsorption of phenol by bentonite. Environ. Pollut. 107, 391–398 (2000)Google Scholar
  24. 24.
    Ekpete, O.A.; Horsfall, M.; Tarawou, T.: Potential of fluid and commercial activated carbons for phenol removal in aqueous systems. J. Eng. Appl. Sci. 5(9), 39–47 (2010)Google Scholar
  25. 25.
    Kumar, S.D.; Subbaiah, V.M.; Reddy, A.S.; Krishnaiah, A.: Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol. 84, 972–981 (2009)Google Scholar
  26. 26.
    Singh, B.K.; Mridula, D.: Sorption dynamic for removal of Phenol from water and waste-water onto bituminous coal. J. Environ. Res. Dev. 2(4), 319–339 (2008)Google Scholar
  27. 27.
    Dabhade, M.A.; Saidutta, M.B.; Murthy, D.V.R.: Adsorption of phenol on granular activated carbon from nutrient medium: equilibrium and kinetic study. Int. J. Environ. Res. 3(4), 557–568 (2009)Google Scholar
  28. 28.
    Oformaja, A.E.; Ho, Y.S.: Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigments 74, 60–66 (2007)Google Scholar
  29. 29.
    Weber, W.J.; Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 89(2), 31–59 (1963)Google Scholar
  30. 30.
    Hamadaouia, O.; Naffrechoux, E.: Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 147, 381–394 (2007)Google Scholar
  31. 31.
    Salim, B.; Abdeslam, H.M.: Removal of phenol from water by adsorption onto sewage sludge based adsorbent. Ital. Assoc. Chem. Eng. 7(20), 221–236 (2014)Google Scholar
  32. 32.
    Temkin, M.I.: Adsorption equilibrium and the kinetics of processes on non-homogeneous surfaces and in the interaction between adsorbed molecules. Zh. Fiz. Chim. 15, 296–332 (1941)Google Scholar
  33. 33.
    Hadi, M.; Samarghandi, M.R.; McKay, C.: Equilibrium two parameter isotherms of acid dyes sorption by activated carbons: study of residual errors. Chem. Eng. J. 160, 408–416 (2010)Google Scholar
  34. 34.
    Menkiti, M.C.; Aniagor, C.O.: Parametric studies on descriptive isotherms for the uptake of crystal violet dye from aqueous solution onto lignin—rich adsorbent. Arab. J. Sci. Eng. 5, 5 (2017). Google Scholar
  35. 35.
    Ngo, H.H.; Hossain, M.A.; Guo, W.: Introductory of Microsoft excel solver function-spreadsheet method for isotherm and kinetics modeling of metals biosorption in water and wastewater. J. Water Sustain. 3(4), 223–237 (2013)Google Scholar
  36. 36.
    Kumar, K.V.; Sivanesan, S.: Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and nonlinear regression methods. J. Hazard. Mater. 136, 721–726 (2006)Google Scholar
  37. 37.
    Kumar, K.V.: Optimum sorption isotherm by linear and nonlinear methods for malachite green onto lemon peel. Dyes Pigments 74, 595–597 (2007)Google Scholar
  38. 38.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)Google Scholar
  40. 40.
    Lagergren, S.: Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24(4), 1–39 (1898)Google Scholar
  41. 41.
    Ho, Y.S.; McKay, G.: The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 735–742 (2000). Google Scholar
  42. 42.
    Asiagwu, A.K.; Owamah, H.I.; Illoh, V.O.: Kinetic and thermodynamic models for the removal of aminophenol (dye) from aqueous solutions using groundnut (Arachis hypogea) shells as the biomass. Adv. Appl. Sci. Res. 3(4), 2257–2265 (2012)Google Scholar
  43. 43.
    Fu, Q.L.; Deng, Y.L.; Li, H.S.; Liu, J.; Hua, H.Q.; Chen, Q.S.; Sa, T.M.: Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis spp. by clay minerals. Appl. Surf. Sci. 255, 4551–4557 (2009)Google Scholar
  44. 44.
    Alkaram, U.F.; Mukhlis, A.A.; Al-Dujaili, A.H.: The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J. Hazard. Mater. 169, 324–332 (2009)Google Scholar
  45. 45.
    Djebbar, M.; Djafri, F.; Bouchekara, M.; Djafri, A.: Adsorption of phenol on natural clay. Appl Water Sci 2(3), 77–86 (2009)Google Scholar
  46. 46.
    Salim, B.; Abdeslam, H.M.: Removal of phenol from water by adsorption onto sewage sludge based adsorbent. AIDIC 7(20), 221–236 (2014)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentNnamdi Azikiwe UniversityAwkaNigeria
  2. 2.Civil and Environmental Engineering Department, Water Resources CenterTexas Tech UniversityLubbockUSA

Personalised recommendations