Advertisement

Comparative Study on the Catalytic Degradation of Methyl Orange by Silver Nanoparticles Synthesized by Solution Combustion and Green Synthesis Method

  • Um-e-Salma Amjad
  • Lubna Sherin
  • Muhammad Faiq Zafar
  • Maria MustafaEmail author
Research Article - Chemical Engineering

Abstract

Nanosized silver nanoparticle (Ag-NP) powder has been synthesized using solution combustion synthesis method and green biological reduction method. The percentage yield and purity inspection of the synthesized powder was performed and compared by UV–Vis, XRD and SEM. Catalytic activities of the synthesized Ag nanoparticles toward methyl orange dye degradation in the presence of NaBH4 are analyzed and have been compared in terms of percentage reduction, reaction time and apparent reaction rate. Silver nanoparticles synthesized by solution combustion synthesis method showed 94% catalytic degradation and a rate of 0.0725 min−1. The apparent kinetic rate of silver nanoparticles synthesized by solution combustion synthesis method was found to be twelve times faster than that of silver nanoparticles synthesized by green synthesis method.

Keywords

Ag-NP Solution combustion synthesis Green synthesis Dye degradation 

Notes

Acknowledgements

This research work was supported by the Higher Education Commission of Pakistan (HEC) through Project # 21-653 SRGP/R&D/HEC/2015 and 21-06 SRGP/R&D/HEC/2016.

References

  1. 1.
    Aberoumand, A.: A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J. Dairy Food Sci. 6, 71–78 (2011)Google Scholar
  2. 2.
    Ferraz, E.R.A.; Grando, M.D.; Oliveira, D.P.: The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fischeri. J. Hazard. Mater. 192, 628–633 (2011).  https://doi.org/10.1016/j.jhazmat.2011.05.063 CrossRefGoogle Scholar
  3. 3.
    Hernández-Zamora, M.; Martínez-Jerónimo, F.; Cristiani-Urbina, E.; Cañizares-Villanueva, R.O.: Congo red dye affects survival and reproduction in the cladoceran Ceriodaphnia dubia. Effects of direct and dietary exposure. Ecotoxicol. Lond. Engl. 25, 1832–1840 (2016).  https://doi.org/10.1007/s10646-016-1731-x CrossRefGoogle Scholar
  4. 4.
    Rafii, F.; Franklin, W.; Cerniglia, C.E.: Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microbiol. 56, 2146–2151 (1990)Google Scholar
  5. 5.
    Chang, Y.-C.; Chen, D.-H.: Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 165, 664–669 (2009).  https://doi.org/10.1016/j.jhazmat.2008.10.034 CrossRefGoogle Scholar
  6. 6.
    Li, X.; Yuan, H.; Quan, X.; Chen, S.; You, S.: Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks. J. Environ. Sci. 63, 250–259 (2018).  https://doi.org/10.1016/j.jes.2017.10.019 CrossRefGoogle Scholar
  7. 7.
    Li, X.; Zhao, Y.; Xi, B.; Meng, X.; Gong, B.; Li, R.; Peng, X.; Liu, H.: Decolorization of methyl orange by a new clay-supported nanoscale zero-valent iron: synergetic effect, efficiency optimization and mechanism. J. Environ. Sci. 52, 8–17 (2017).  https://doi.org/10.1016/j.jes.2016.03.022 CrossRefGoogle Scholar
  8. 8.
    Sinha, A.K.; Basu, M.; Sarkar, S.; Pradhan, M.; Pal, T.: Synthesis of gold nanochains via photoactivation technique and their catalytic applications. J. Colloid Interface Sci. 398, 13–21 (2013).  https://doi.org/10.1016/j.jcis.2013.01.061 CrossRefGoogle Scholar
  9. 9.
    Han, J.; Fang, P.; Jiang, W.; Li, L.; Guo, R.: Ag-nanoparticle-loaded mesoporous silica: spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir. 28, 4768–4775 (2012)CrossRefGoogle Scholar
  10. 10.
    Gupta, N.; Singh, H.P.; Sharma, R.K.: Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J. Mol. Catal. Chem. 335, 248–252 (2011).  https://doi.org/10.1016/j.molcata.2010.12.001 CrossRefGoogle Scholar
  11. 11.
    Naik, B.; Hazra, S.; Prasad, V.S.; Ghosh, N.N.: Synthesis of Ag nanoparticles within the pores of SBA-15: an efficient catalyst for reduction of 4-nitrophenol. Catal. Commun. 12, 1104–1108 (2011).  https://doi.org/10.1016/j.catcom.2011.03.028 CrossRefGoogle Scholar
  12. 12.
    Pradhan, N.; Pal, A.; Pal, T.: Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 17, 1800–1802 (2001).  https://doi.org/10.1021/la000862d CrossRefGoogle Scholar
  13. 13.
    Chen, D.; Qiao, X.; Qiu, X.; Chen, J.: Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J. Mater. Sci. 44, 1076–1081 (2009).  https://doi.org/10.1007/s10853-008-3204-y CrossRefGoogle Scholar
  14. 14.
    Zhi-Guo, X.; Yong-Hua, L.; Pei, W.; Kai-Qun, L.; Jie, Y.; Hai, M.: Photonic crystal fibre SERS sensors based on silver nanoparticle colloid. Chin. Phys. Lett. 25, 4473 (2008).  https://doi.org/10.1088/0256-307X/25/12/081 CrossRefGoogle Scholar
  15. 15.
    Marassi, V.; Cristo, L.D.; Smith, S.G.J.; Ortelli, S.; Blosi, M.; Costa, A.L.; Reschiglian, P.; Volkov, Y.; Prina-Mello, A.: Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 5, 171113 (2018).  https://doi.org/10.1098/rsos.171113 CrossRefGoogle Scholar
  16. 16.
    Tran, Q.H.; Nguyen, V.Q.; Le, A.-T.: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013).  https://doi.org/10.1088/2043-6262/4/3/033001 CrossRefGoogle Scholar
  17. 17.
    Shiraishi, Y.; Toshima, N.: Colloidal silver catalysts for oxidation of ethylene. J. Mol. Catal. Chem. 141, 187–192 (1999).  https://doi.org/10.1016/S1381-1169(98)00262-3 CrossRefGoogle Scholar
  18. 18.
    Zhang, T.; Song, Y.-J.; Zhang, X.-Y.; Wu, J.-Y.: Synthesis of silver nanostructures by multistep methods. Sensors 14, 5860–5889 (2014).  https://doi.org/10.3390/s140405860 CrossRefGoogle Scholar
  19. 19.
    Syafiuddin, A.; Salmiati Salim, M.R.; Kueh, A.B.H.; Hadibarata, T.; Nur, H.: A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J. Chin. Chem. Soc. 64, 732–756 (2017).  https://doi.org/10.1002/jccs.201700067 CrossRefGoogle Scholar
  20. 20.
    González-Cortés, S.L.; Imbert, F.E.: Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. Gen. 452, 117–131 (2013).  https://doi.org/10.1016/j.apcata.2012.11.024 CrossRefGoogle Scholar
  21. 21.
    Li, F.; Ran, J.; Jaroniec, M.; Qiao, S.Z.: Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7, 17590–17610 (2015).  https://doi.org/10.1039/C5NR05299H CrossRefGoogle Scholar
  22. 22.
    Aruna, S.T.; Mukasyan, A.S.: Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008).  https://doi.org/10.1016/j.cossms.2008.12.002 CrossRefGoogle Scholar
  23. 23.
    Islam, M.T.; Saenz-Arana, R.; Wang, H.; Bernal, R.; Noveron, J.C.: Green synthesis of gold, silver, platinum, and palladium nanoparticles reduced and stabilized by sodium rhodizonate and their catalytic reduction of 4-nitrophenol and methyl orange. New J. Chem. 42, 6472–6478 (2018).  https://doi.org/10.1039/C8NJ01223G CrossRefGoogle Scholar
  24. 24.
    Vidhu, V.K.; Philip, D.: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56, 54–62 (2014).  https://doi.org/10.1016/j.micron.2013.10.006 CrossRefGoogle Scholar
  25. 25.
    Zamiri, R.; Azmi, B.Z.; Darroudi, M.; Sadrolhosseini, A.R.; Husin, M.S.; Zaidan, A.W.; Mahdi, M.A.: Preparation of starch stabilized silver nanoparticles with spatial self-phase modulation properties by laser ablation technique. Appl. Phys. A 102, 189–194 (2011).  https://doi.org/10.1007/s00339-010-6129-7 CrossRefGoogle Scholar
  26. 26.
    Parveen, K.; Banse, V.; Ledwani, L.: Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf. Proc. 1724, 020048 (2016).  https://doi.org/10.1063/1.4945168 CrossRefGoogle Scholar
  27. 27.
    Spizzirri, U.G.; Iemma, F.; Puoci, F.; Cirillo, G.; Curcio, M.; Parisi, O.I.; Picci, N.: Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromol 10, 1923–1930 (2009).  https://doi.org/10.1021/bm900325t CrossRefGoogle Scholar
  28. 28.
    Sharma, P.; Lotey, G.S.; Singh, S.; Verma, N.K.: Solution-combustion: the versatile route to synthesize silver nanoparticles. J. Nanoparticle Res. 13, 2553–2561 (2011).  https://doi.org/10.1007/s11051-010-0148-3 CrossRefGoogle Scholar
  29. 29.
    Park, J.; Cha, S.-H.; Cho, S.; Park, Y.: Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction. J. Nanoparticle Res. 18, 166 (2016).  https://doi.org/10.1007/s11051-016-3466-2 CrossRefGoogle Scholar
  30. 30.
    Pacioni, N.L.; Borsarelli, C.D.; Rey, V.; Veglia, A.V.: Synthetic routes for the preparation of silver nanoparticles. In: Alarcon, E.I., Griffith, M., Udekwu, K.I. (eds.) Silver Nanoparticle Applications, pp. 13–46. Springer, Cham (2015)CrossRefGoogle Scholar
  31. 31.
    Pyatenko, A.; Shimokawa, K.; Yamaguchi, M.; Nishimura, O.; Suzuki, M.: Synthesis of silver nanoparticles by laser ablation in pure water. Appl. Phys. A 79, 803–806 (2004).  https://doi.org/10.1007/s00339-004-2841-5 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Um-e-Salma Amjad
    • 1
  • Lubna Sherin
    • 2
  • Muhammad Faiq Zafar
    • 1
  • Maria Mustafa
    • 1
    Email author
  1. 1.Laboratory of Catalysis and Nanofabrication, Department of Chemical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.Department of ChemistryCOMSATS University IslamabadLahorePakistan

Personalised recommendations