A New Highly Efficient Algerian Clay for the Removal of Heavy Metals of Cu(II) and Pb(II) from Aqueous Solutions: Characterization, Fractal, Kinetics, and Isotherm Analysis

  • Salah Bahah
  • Saci Nacef
  • Derradji Chebli
  • Abdallah BouguettouchaEmail author
  • Brahim Djellouli
Research Article - Chemistry


A physicochemical characterization, the irregularity of the surface quantified by the fractal dimension (DS), and the adsorption of copper (Cu(II)) and lead (Pb(II)) of a kaolin clay from aqueous solutions were studied. In addition, the effects of temperature, contact time, pH of solution, and clay mass on copper Cu(II) and Pb(II) adsorption were investigated. In this work, X-ray fluorescence, X-ray diffraction, and Fourier transform infrared spectroscopy were applied to study the composition and structure of the clay studied. The Brunauer–Emmett–Teller theory and the t-plot method were used to calculate the specific surface and porosity, respectively. The fractal analysis showed that the material has an irregular surface, with a very complex pore structure. This material has a very high adsorption capacity, which exceeds 97.5% and 99.95% for Cu(II) an Pb(II), respectively, for all concentrations under normal conditions of pH and temperature (pH7, T = 25 °C). The maximum adsorption capacity calculated by the Langmuir model was 52.63 mg g−1 for copper (Cu). For lead (Pb) ions, the maximum capacity was 57.30 mg g−1. The adsorption process was rapid, as equilibrium was achieved within 10 min for copper at 25 and 50 mg L−1 and within 30 min at 100 mg L−1. For lead (Pb) ions, equilibrium was achieved within the first minute at all concentrations. The kaolin clay has a better affinity for Pb(II) than Cu(II). The Temkin model showed better correlation with the experimental data for this material. The kinetic study demonstrated that Pb(II) and Cu(II) adsorption on kaolin was in a good accordance with the pseudo-second-order kinetic model.


Fractal dimension Kaolin Copper Lead Adsorption Kinetics Isotherm 


  1. 1.
    Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J.: Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 101, 133–164 (2012)CrossRefGoogle Scholar
  2. 2.
    Gupta, P.; Diwan, B.: Bacterial, bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategie. Biotechnol. Rep. 13, 7–58 (2017)Google Scholar
  3. 3.
    Ibrahim, W.M.; Hassan, A.F.; Azab, Y.A.: Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt. J. Basic Appl. Sci. 3, 241–249 (2016)CrossRefGoogle Scholar
  4. 4.
    Shabani, K.S.; Aredejani, F.D.; Singh, R.N.; Marandi, R.; Soleimanyfar, H.: Numerical modeling of Cu2+ and Mn2+ ions biosorption by Aspergillus niger fungal biomass in a continuous reactor. Arch. Min. Sci. 56(3), 461–476 (2011)Google Scholar
  5. 5.
    Shabani, K.S.; Ardejani, F.D.; Badii, K.; Olya, M.E.: Preparation and characterization of novel nanomineral for the removal of several heavy metals from aqueous solution batch and continuous systems. Arab. J. Chem. 10, 3108–3127 (2017)CrossRefGoogle Scholar
  6. 6.
    Danil de Namor, A.F.; El Gamouz, A.; Frangie, S.; Martinez, V.; Valiente, L.; Webb, O.A.: Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. J. Hazard. Mater. 241–242, 14–31 (2012)CrossRefGoogle Scholar
  7. 7.
    Selim, K.A.; El-Tawil, R.S.; Rostom, M.: Utilization of surface modified phyllosilicate for heavy metals removal from aqueous solutions. Egypt. J. Petrol. 27, 393–401 (2017)CrossRefGoogle Scholar
  8. 8.
    Kamaraj, R.; Ganesan, P.; Lakshmi, J.; Vasudevan, S.: Removal of copper from water by electrocoagulation process—effect of alternating current (AC) and direct current (DC). Environ. Sci. Pollut. Res. 20, 399–412 (2013)CrossRefGoogle Scholar
  9. 9.
    Vasudevan, S.; Lakshmi, J.; Packiyam, M.: Electrocoagulation studies on removal of cadmium using magnesium electrode. J. Appl. Electrochem. 40, 2023–2032 (2010)CrossRefGoogle Scholar
  10. 10.
    Vasudevan, S.; Lakshmi, J.; Sozhan, G.: Electrocoagulation Studies on the Removal of Copper from Water Using Mild Steel electrode. Water Environ. Res. 84, 209–2019 (2012)CrossRefGoogle Scholar
  11. 11.
    Vasudevan, S.; Lakshmi, J.; Layara, J.; Sozhan, G.: Remediation of phosphate-contaminated water by electrocoagulation with aluminum, aluminum alloy and mild steel anodes. Hazard. Mater. 164, 1480–1486 (2009)CrossRefGoogle Scholar
  12. 12.
    Vasudevan, S.; Lakshmi, J.; Vanathi, R.: Electrochemical coagulation for chromium removal: process optimization, kinetics, isotherm and sludge characterization. Clean 38, 9–16 (2010)Google Scholar
  13. 13.
    Murray, H.H.: Applied Clay Mineralogy, vol. 2, 1st edn. Elsevier Science, Amsterdam (2006)Google Scholar
  14. 14.
    Saikia, B.J.; Parthasarathy, G.: Fourier transform infrared spectroscopic characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206–210 (2010)CrossRefGoogle Scholar
  15. 15.
    Kiros, A.; Gholap, A.V.; Gigante, G.E.: Fourier transform infrared spectroscopic characterization of clay minerals from rocks of Lalibela churches, Ethiopia. Int. J. Phys. Sci. 8(3), 109–119 (2013)CrossRefGoogle Scholar
  16. 16.
    Djomgoue, P.; Njopwouo, D.: FT-IR spectroscopy applied for surface clays characterization. J Surf. Eng. Mater. Adv. Technol. 3, 275–282 (2013)Google Scholar
  17. 17.
    Diko, M.; Ekosse, G.: Fourier transform infrared spectroscopy and thermal analyses of Kaolinitic Clays from South Africa And Cameroon. J. Ogola Acta Geodyn. Geomater. 13(2), 149–158 (2016)Google Scholar
  18. 18.
    Vaculikova, L.; Plevova, E.; Vallova, S.; Koutnik, I.: Characterization and differentiation of Kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geomater. 8, 59–67 (2011)Google Scholar
  19. 19.
    Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.: Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  20. 20.
    Bergaya, F.; Lagaly, G.: Handbook of Clay Science, 2nd edn. Elsevier B.V, Amsterdam (2013)Google Scholar
  21. 21.
    Gregg, S.J.; Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press, London (1982)Google Scholar
  22. 22.
    Brunauer, S.; Emmett, P.E.; Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  23. 23.
    Li, A.; Ding, W.; He, J.; Dai, P.; Yin, S.; Xie, F.: Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: a case study of lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China. Mar. Pet. Geol. 70, 46–57 (2016)CrossRefGoogle Scholar
  24. 24.
    Sing, K.S.W.: The use of gas adsorption for the characterization of porous solids. Colloids Surf. 38, 113–124 (1989)CrossRefGoogle Scholar
  25. 25.
    Sing, K.S.W.: Physisorption of gases by carbon blacks. Carbon 32, 1311–1317 (1994)CrossRefGoogle Scholar
  26. 26.
    Liu, X.; Xiong, J.; Liang, L.: Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J. Nat. Gas Sci. Eng. 22, 62–72 (2015)CrossRefGoogle Scholar
  27. 27.
    Celis, R.; Cornejo, J.; Hermosin, M.C.: Textural properties of synthetic clay-ferrihydrite associations. Clay Miner. 33, 395–407 (1998)CrossRefGoogle Scholar
  28. 28.
    Helmy, A.K.; Ferreiro, E.A.; De Bussetti, S.G.; Peinemann, N.: Surface areas of kaolin, α-Fe2O3 and hydroxy-Al montmorillonite. Colloid Polym. Sci. 276, 539–543 (1998)CrossRefGoogle Scholar
  29. 29.
    Hajnos, M.; Korsunskaia, L.; Pachepsky, Y.: Soil pore surface properties in managed grasslands. Soil Tillage Res. 55, 63–70 (2000)CrossRefGoogle Scholar
  30. 30.
    Zhang, S.; Tang, S.; Tang, D.; Huang, W.; Pan, Z.: Determining fractal dimensions of coal pores by FHH model: problems and effects. J. Nat. Gas Sci. Eng. 21, 929–939 (2014)CrossRefGoogle Scholar
  31. 31.
    Yang, F.; Ning, Z.; Liu, H.: Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 115, 378–384 (2014)CrossRefGoogle Scholar
  32. 32.
    Pfeifer, P.; Cole, M.W.: Fractals in surface science: scattering and thermodynamics of adsorbed films II. New J. Phys. 14, 221–232 (1990)Google Scholar
  33. 33.
    Sokolowska, Z.; Borowko, M.; Reszko-Zygmunt, J.; Sokolowski, S.: Adsorption of nitrogen and water vapor by alluvial soils. Geoderma 107, 33–54 (2002)CrossRefGoogle Scholar
  34. 34.
    Gonte, R.; Balasubramanian, K.: Heavy and toxic metal uptake by mesoporous hypercrosslinked SMA beads: isotherms and kinetics. J. Saudi Chem. Soc. 20, 579–590 (2016)CrossRefGoogle Scholar
  35. 35.
    Lee, J.Y.; Chen, C.H.; Cheng, S.; Li, H.Y.: Adsorption of Pb(II) and Cu(II) metal ions on functionalized large-pore mesoporous silica. Int. J. Environ. Sci. Technol. 13, 65–76 (2016)CrossRefGoogle Scholar
  36. 36.
    Golkhah, S.; Mousavi, H.Z.; Shirkhan, H.; Khaligh, A.: Removal of Pb(II) and Cu(II) ions from aqueous solutions by cadmium sulfide nanoparticles. Int. J. Nanosci. Nanotechnol. 13(2), 105–117 (2017)Google Scholar
  37. 37.
    Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A.: Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 170, 969–977 (2009)CrossRefGoogle Scholar
  38. 38.
    Yu, B.; Xu, J.; Liu, J.-H.; Yang, S.-T.; Luo, J.; Zhou, Q.; Wan, J.; Liao, R.; Wang, H.; Liu, Y.: Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J. Environ. Chem. Eng. 1, 1044–1050 (2013)CrossRefGoogle Scholar
  39. 39.
    El Ass, K.: Adsorption of cadmium and copper onto natural clay: isotherm, kinetic and thermodynamic studies. Glob. NEST J. 20(2), 198–207 (2018)CrossRefGoogle Scholar
  40. 40.
    Sari, A.; Tuzen, M.; Soylak, M.; Citak, D.: Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 149, 283–291 (2007)CrossRefGoogle Scholar
  41. 41.
    Azzam, A.M.; El-Wakeel, S.T.; Mostafa, B.B.; El-Shahat, M.: Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. J. Environ. Chem. Eng. (2016). Google Scholar
  42. 42.
    Sana, Z.A.; Makshoof, A.; Muhammad, S.; Muhammad, I.D.: Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum a green approach. Hydrol. Curr. Res. 2, 4 (2011)Google Scholar
  43. 43.
    Jaber, S.: Removal of heavy metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from aqueous solutions by using Xanthium pensylvanicum. Leonardo J. Sci. 2013, 10–97 (2013)Google Scholar
  44. 44.
    Sheeba Thavamani, S.: Removal of Cr(VI), Cu(II), Pb(II) and Ni(II) from aqueous solutions by adsorption on alumina. Res. J. Chem. Sci. 3(8), 44–48 (2013)Google Scholar
  45. 45.
    Ali, S.; Athar, M.; Salman, M.; Din, M.I.: Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum—a green approach. Hydrol. Curr. Res. 2, 118 (2011). Google Scholar
  46. 46.
    Demirbas, A.; Sari, A.; Isildak, O.: Adsorption thermodynamics of stearic acid onto bentonite. J. Hazard. Mater. B135, 23–226 (2006)Google Scholar
  47. 47.
    Liang, L.; He, J.; Wei, M.; Evans, D.G.; Duan, X.: Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides. J. Hazard. Mater. B133, 119–128 (2016)Google Scholar
  48. 48.
    Lazarevic, S.; Jankovic-Castvan, I.; Jovanovic, D.; Milonjic, S.; Janackovic, D.; Petrovic, R.: Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Appl. Clay Sci. 37, 47–57 (2007)CrossRefGoogle Scholar
  49. 49.
    McBride, M.B.: Environmental chemistry of soils. Oxford University Press, New York (1994)Google Scholar
  50. 50.
    Vico, L.: Acid-base behaviour an Cu2+ and Zn2+ complexation properties of the sepiolite/water interface. Chem. Geol. 198, 213–222 (2003)CrossRefGoogle Scholar
  51. 51.
    Lide, D.R.: Handbook of Chemistry and Physics, 79th edn. CRC Press, Boca Raton (1998)Google Scholar
  52. 52.
    Hillel, D.: Environmental Soil Physics. Academic Press, San Diego (1998)Google Scholar
  53. 53.
    Amarasinghe, B.M.W.P.K.; Williams, R.A.: Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132, 299–309 (2007)CrossRefGoogle Scholar
  54. 54.
    Ricordel, S.; Taha, S.; Cisse, I.; Dorange, G.: Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep. Purif. Technol. 24, 389–401 (2001)CrossRefGoogle Scholar
  55. 55.
    Figen, G.; Bahar, B.: Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. J. Mol. Liq. 243, 790–798 (2017)CrossRefGoogle Scholar
  56. 56.
    Orumwense, F.F.O.: Removal of lead from water by adsorption on a kaolinitic clay. J. Chem. Technol. Biotechnol. 65, 363–369 (1996)CrossRefGoogle Scholar
  57. 57.
    Unuabonah, E.I.; Adebowale, K.O.; Olu-Owolabi, B.I.; Yang, L.Z.; Kong, L.X.: Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93, 1–9 (2008)CrossRefGoogle Scholar
  58. 58.
    Padilla-Ortega, E.; Leyva-Ramos, R.; Mendoza-Barron, J.; Guerrero-Coronado, R.M.; Jacobo-Azuara, A.; Aragon-Piña, A.: Adsorption of heavy metal ions from aqueous solution onto sepiolite. Adsorpt. Sci. Technol. 29(6), 569–584 (2011)CrossRefGoogle Scholar
  59. 59.
    Chouchane, T.; Yahi, M.; Boukari, A.; Balaska, A.; Chouchane, S.: Adsorption du cuivre en solution par le kaolin. J. Mater. Environ. Sci. 7(8), 2825–2842 (2016)Google Scholar
  60. 60.
    Al-Degs, Y.S.; El-Barghouthi, M.I.; Issa, A.A.; Khraisheh, M.A.; Walker, G.M.: Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res. 40(26), 45–2658 (2006)Google Scholar
  61. 61.
    Bhattacharyya, K.G.; Sen Gupta, S.: Removal of Cu(II) by natural and acid-activated clays: an insight of adsorption isotherm, kinetic and thermodynamics. Desalination 272, 66–75 (2011)CrossRefGoogle Scholar
  62. 62.
    Panadare, D.C.; Lade, V.G.; Rathod, V.K.: Adsorptive removal of copper (II) from aqueous solution onto the waste sweet lime peels (SLP): equilibrium, kinetics and thermodynamics studies. Desalin. Water Treat. 52, 7822–7837 (2014)CrossRefGoogle Scholar
  63. 63.
    Lee, C.K.; Low, K.S.; Chew, S.L.: Removal of anionic dyes by water hyacinth roots. Adv. Environ. Res. 3, 343–351 (1999)Google Scholar
  64. 64.
    Okoronkwo, A.E.; Anwasi, S.: Biosorption modeling of copper and zinc adsorption from aqueous solution by Tithonia diversifolia. In: CSN Conference Proceeding, pp. 92–102. Chemical Society of Nigeria, Deltachem (2008)Google Scholar
  65. 65.
    Weber, W.J.; Morris, J.C.: Kinetics of adsorption of carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–63 (1963)Google Scholar
  66. 66.
    Kaaser, S.; Barrington, S.; Elektorowicz, M.; Wang, L.: Effect of Pb and Cd on Cu adsorption by sand-bentonite 1iners». Can. J. Civ. Eng. 32(1), 241–249 (2005)CrossRefGoogle Scholar
  67. 67.
    Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H.: Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 164, 473–482 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Laboratoire de Génie des Procédés Chimiques (LGPC), Département de Génie des Procédés, Faculté de TechnologieUniversité Ferhat Abbas Sétif-1SétifAlgeria

Personalised recommendations