Influence of Process Parameters on Machinability of Inconel 718 by Electrochemical Micromachining Process using TOPSIS Technique

  • T. Geethapriyan
  • T. MuthuramalingamEmail author
  • K. Kalaichelvan
Research Article - Mechanical Engineering


Accurate and precise micromachining with intricate features is an essential requirement for various applications of engineering materials in the present scenario. This is effectively achieved by the enhancing the electrochemical machining process, since it is a new and promising technique offering distinct advantages in overall machining quality. The turbine performance depends on a turbine blade and many small apertures with varying diameters of 0.5–4 mm for reducing the heat produced during its operation for improving efficiency. The present study was carried out for investigating the effects of diverse input process factors on the machining accuracies in the electrochemical micromachining process under two different electrolytes such as sodium chloride and sodium nitrate. The sodium chloride was found to have a higher material removal rate compared to sodium nitrate as electrolyte. A better surface finish and radial overcut were achieved with sodium nitrate compared to sodium chloride electrolyte. The optimum combination of ECMM process parameters was determined using TOPSIS method and verified with a confirmation test.


Inconel 718 NaCl NaNO3 TOPSIS Optimization 


  1. 1.
    Geethapriyan, T.; Kalaichelvan, K.; Muthuramalingam, T.: Multi performance optimization of electrochemical micromachining process parameters on machining Inconel 718 using Taguchi-grey relational analysis. La Metallurgia Italiana 4, 13–19 (2016)Google Scholar
  2. 2.
    Alexandre, S.; Atanas, I.: Recent developments and research challenges in electrochemical micromachining. Int. J. Adv. Manuf. Technol. 69, 563–581 (2013)CrossRefGoogle Scholar
  3. 3.
    Tang, L.; Guo, Y.-F.: Experimental study of special purpose stainless steel on electrochemical machining of electrolyte composition. Mater. Manuf. Process. 28, 457–462 (2013)CrossRefGoogle Scholar
  4. 4.
    Asokan, P.; Ravi, K.R.; Jeyapaul, R.; Santhi, M.: Development of multi-objective optimization models for electrochemical machining process. Int. J. Adv. Manuf. Technol. 39(1), 55–63 (2008)CrossRefGoogle Scholar
  5. 5.
    Munda, J.; Bhattacharyya, B.: Investigation into electrochemical micromachining through response surface methodology based approach. Int. J. Adv. Manuf. Technol. 35(7), 821–832 (2008)CrossRefGoogle Scholar
  6. 6.
    Kumar, M.; Sing, H.; Zude, Z.: Multi response optimization in wire electrical discharge machining of Inconel X-750 using Taguchi’s technique and grey relational analysis. Mater. Manuf. Process. 3, 1–14 (2016)CrossRefGoogle Scholar
  7. 7.
    Franci, C.; Joze, B.: Optimization of cutting process by GA approach. Robot. Comput. Integr. Manuf. 19, 113–121 (2003)CrossRefGoogle Scholar
  8. 8.
    Majid, B.; Khanmohammadi, O.S.; Morteza, Y.; Joshua, I.: A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 39, 13051–13069 (2012)CrossRefGoogle Scholar
  9. 9.
    Prabhakaran, R.T.D.; Babu, B.J.C.; Agrawal, V.P.: Optimum selection of a composite product system using MADM approach. Mater. Manuf. Process. 21, 883–891 (2006)CrossRefGoogle Scholar
  10. 10.
    Maity, S.R.; Chakraborty, S.: Grinding wheel abrasive material selection using fuzzy TOPSIS method. Mater. Manuf. Process. 28, 408–417 (2013)CrossRefGoogle Scholar
  11. 11.
    Sakthivel, G.; Saravanakumar, D.; Muthuramalingam, T.: Application of failure mode and effect analysis in manufacturing industry-an integrated approach with FAHP-fuzzy TOPSIS and FAHP-fuzzy VIKOR. Int. J. Prod. Qual. Manag. 24, 398–423 (2018)Google Scholar
  12. 12.
    Swain, A.K.; Sundaram, M.M.; Rajurkar, K.P.: Use of coated micro tools in advanced manufacturing: an exploratory study in electrochemical machining (ECM) context. J. Manuf. Process. 14, 150–159 (2015)CrossRefGoogle Scholar
  13. 13.
    Geethapriyan, T.; Kalaichelvan, K.; Muthuramalingam, T.: Influence of coated tool electrode on machining Inconel alloy 718 in electrochemical micro machining. Procedia CIRP 46, 127–130 (2016)CrossRefGoogle Scholar
  14. 14.
    Vasanth, S.; Muthuramalingam, T.; Vinothkumar, P.; Geethapriyan, T.; Murali, G.: Performance analysis of process parameters on machining titanium (Ti–6Al–4V) alloy using abrasive water jet machining process. Procedia CIRP 46, 139–142 (2016)CrossRefGoogle Scholar
  15. 15.
    Muthuramalingam, T.; Mohan, B.: Application of Taguchi-grey multi response optimization on process parameters in electro erosion. Measurement 58, 495–502 (2014)CrossRefGoogle Scholar
  16. 16.
    Muthuramalingam, T.; Mohan, B.: Influence of tool electrode properties on machinability in spark erosion machining. Mater. Manuf. Process. 28, 939–943 (2013)Google Scholar
  17. 17.
    Geethapriyan, T.; Kalaichelvan, K.; Muthuramalingam, T.; Rajadurai, A.: Performance analysis of process parameters on machining α–β titanium alloy in electrochemical micromachining process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232, 1577–1589 (2018)CrossRefGoogle Scholar
  18. 18.
    Huang, S.F.; Liu, Y.: Electrochemical micromachining of complex shapes on nickel and nickel-based superalloys. Mater. Manuf. Process. 29, 1483–1487 (2014)CrossRefGoogle Scholar
  19. 19.
    Malapati, M.; Bhattacharyya, B.: Investigation into electrochemical micromachining process during micro-channel generation. Mater. Manuf. Process. 26, 1019–1027 (2011)CrossRefGoogle Scholar
  20. 20.
    Lohrengel, M.M.: Pulsed electrochemical machining of iron in NaNO3: fundamentals and new aspects. Mater. Manuf. Process. 20, 1–8 (2005)CrossRefGoogle Scholar
  21. 21.
    Thanigaivelan, R.; Arunachalam, R.M.: Experimental study on the influence of tool electrode tip shape on electrochemical micromachining of 304 stainless steel. Mater. Manuf. Process. 25, 1181–1185 (2010)CrossRefGoogle Scholar
  22. 22.
    Rathod, V.; Doloi, B.; Bhattacharyya, B.: Sidewall insulation of microtool for electrochemical micromachining to enhance the machining accuracy. Mater. Manuf. Process. 29, 305–313 (2014)CrossRefGoogle Scholar
  23. 23.
    Muthuramalingam, T.; Mohan, B.; Rajadurai, A.; Saravanakumar, D.: Monitoring and fuzzy control approach for efficient electrical discharge machining process. Mater. Manuf. Process. 29, 281–286 (2014)CrossRefGoogle Scholar
  24. 24.
    Huo, J.; Liu, S.; Wang, Y.; Muthuramalingam, T.; Pi, V.N.: Influence of process factors on surface measures on electrical discharge machined stainless steel using TOPSIS. Mater. Res. Express 6(8), 086507 (2019)CrossRefGoogle Scholar
  25. 25.
    Yuvaraj, N.; Kumar, M.P.: Multi response optimization of abrasive water jet cutting process parameters using TOPSIS approach. Mater. Manuf. Process. 30, 882–889 (2015)CrossRefGoogle Scholar
  26. 26.
    Yaxin, T.: Laser enhanced electrochemical machining process. Mater. Manuf. Process. 17, 789–796 (2006)Google Scholar
  27. 27.
    Shuangqing, Q.; Feng, J.; Ningsong, Q.; Hansong, L.: Improving the localization of surface texture by electrochemical machining with auxiliary anode. Mater. Manuf. Process. 29, 1488–1493 (2014)CrossRefGoogle Scholar
  28. 28.
    Hai-Ping, T.; Jung-Chou, H.; Jyun-Cin, Y.; Biing-Hwa, Y.: Improvement of electrochemical micro drilling accuracy using helical tool. Mater. Manuf. Process. 23, 499–505 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSRM Institute of Science and TechnologyKattankulathurIndia
  2. 2.Department of Mechatronics EngineeringSRM Institute of Science and TechnologyKattankulathurIndia
  3. 3.Department of Ceramic TechnologyAnna UniversityChennaiIndia

Personalised recommendations