Arabian Journal for Science and Engineering

, Volume 44, Issue 7, pp 6423–6434 | Cite as

Synthesis, Spectroscopic and Antimicrobial Studies of Homo- and Heteronuclear Tin(IV)/Pd(II) Complexes of 2-Amino-6-(Dithiocarboxyamino)Hexanoic Acid

  • Shabbir HussainEmail author
  • Zark Zahid
  • Muhammad Shahid
  • Muhammad Amin Abid
Research Article - Chemistry


Homobimetallic organotin(IV) carboxylates dithiocarboxylates, Ph2SnLCS2Sn(Cl)Ph2 (1) and Ph3SnHLCS2SnPh3 (2) were synthesized by a room temperature reaction of l-lysine monohydrate (H2LH) with potassium hydroxide, carbon disulfide and Ph3SnCl/Ph2SnCl2 in methanol. Heterotrinuclear complexes (Bu2SnLCS2)2Pd (3) and (Bu2SnLCS2)2Pd (4) were also synthesized by a reaction of H2LH with KOH, CS2 and PdCl2(aq) in methanol followed by the treatment with n-Bu2SnCl2/Ph2SnCl2. The products were characterized by elemental analysis, FT-IR, multinuclear NMR (1H, 13C and 119Sn) and electron ionization mass spectroscopy (EIMS). The elemental analysis and mass spectrometry verified the molecular composition and structures of complexes. FT-IR spectroscopy demonstrated monodentate binding behavior of the carboxylate group and chelating mode of the dithiocarbamate moiety. The diorganotin(IV) derivatives 1, 3 and 4 convert their solid-state tetra-coordinated structures into trigonal bipyramidal arrangements in solution. However, triphenyltin(IV) derivative 2 exhibited penta-coordinated environment around Sn(IV) in the solid-state and tetrahedral configuration in the solution form. A square planar environment around Pd(II) was exhibited in the solid state. The investigated products displayed antibacterial/antifungal potential, and their minimal inhibitory concentrations (MIC) values were also demonstrated. The nature of the coordinated metals (Sn + Sn or Sn + Pd) and the substitution pattern at tin play a major role in biological actions of these products. The heterometallic (Pd, Sn) products possessed more potential against fungi than bacteria. The heterobimetallic dibutyltin(IV) complex 3 has shown the lowest hemolytic activity (10.76%), while its phenyltin(IV) counterpart 4 possessed the highest cytotoxicity (50.11%).


Organotin(IV) IR NMR EIMS Antibacterial/antifungal Hemolytic 


  1. 1.
    Adeyemi, J.; Onwudiwe, D.; Ekennia, A.; Anokwuru, C.; Nundkumar, N.; Singh, M.; Hosten, E.C.: Synthesis, characterization and biological activities of organotin(IV) diallyldithiocarbamate complexes. Inorganica Chim. Acta. 485, 64–72 (2019)CrossRefGoogle Scholar
  2. 2.
    Hussain, S.; Ali, S.; Shahzadi, S.; Tahir, M.N.; Shahid, M.: Synthesis, characterization, biological activities, crystal structure and DNA binding of organotin (IV) 5-chlorosalicylates. J. Coord. Chem. 68, 2369–2387 (2015)CrossRefGoogle Scholar
  3. 3.
    Barbosa, A.S.L.; de Siqueira Guedes, J.; da Silva, D.R.; Meneghetti, S.M.P.; Meneghetti, M.R.; da Silva, A.E.; de Araujo, M.V.; Alexandre-Moreira, M.S.; de Aquino, T.M.; Siqueira Junior, J.P.: Synthesis and evaluation of the antibiotic and adjuvant antibiotic potential of organotin(IV) derivatives. J. Inorg. Biochem. 180, 80–88 (2018)CrossRefGoogle Scholar
  4. 4.
    Xu, J.; Zhang, C.; Qu, H.; Tian, C.: Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly (vinyl chloride). J. Appl. Polym. Sci. 98, 1469–1475 (2005)CrossRefGoogle Scholar
  5. 5.
    Katari, N.K.; Srinivas, K.: A novel approach to the synthesis of aryldithiocarbamic acid esters with arylamines and CS2 in aqueous media. Adv. Appl. Sci. Res. 5, 349–355 (2014)Google Scholar
  6. 6.
    Shaheen, F.; Zia-Ur-Rehman,; Ali, S.; Meetsma, A.: Structural properties and antibacterial potency of new supramolecular organotin(IV) dithiocarboxylates. Polyhedron 31, 697–703 (2012)CrossRefGoogle Scholar
  7. 7.
    Tariq, M.; Ali, S.; Muhammad, N.; Shah, N.A.; Sirajuddin, M.; Tahir, M.N.; Khalid, N.; Khan, M.R.: Biological screening, DNA interaction studies, and catalytic activity of organotin(IV) 2-(4-ethylbenzylidene)butanoic acid derivatives: synthesis, spectroscopic characterization, and X-ray structure. J. Coord. Chem. 67, 323–340 (2014)CrossRefGoogle Scholar
  8. 8.
    Ramasamy, K.; Kuznetsov, V.L.; Gopal, K.; Malik, M.A.; Raftery, J.; Edwards, P.P.; O’Brien, P.: Organotin dithiocarbamates: single-source precursors for tin sulfide thin films by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 25, 266–276 (2013)CrossRefGoogle Scholar
  9. 9.
    Sahin, O.; Ozdemira, U.O.; Seferoglub, N.; Genc, Z.K.; Kayad, K.; Aydınera, B.; Tekine, S.; Seferoglua, Z.: New platinum (II) and palladium (II) complexes of coumarin-thiazole Schiff base with a fluorescent chemosensor properties: synthesis, spectroscopic characterization, X-ray structure determination, in vitro anticancer activity on various human carcinoma cell lines and computational studies. J. Photoch. Photobio. B 178, 428–439 (2018)CrossRefGoogle Scholar
  10. 10.
    Powers, D.C.; Ritter, T.: Bimetallic Pd (III) complexes in palladium-catalysed carbon–heteroatom bond formation. Nat. Chem. 1, 302–309 (2009)CrossRefGoogle Scholar
  11. 11.
    Ma, D.Y.; Zhang, L.X.; Rao, X.Y.; Wu, T.L.; Li, D.H.; Xie, X.Q.: Synthesis, characterization, luminescence, antibacterial, and catalytic activities of a palladium(II) complex involving a Schiff base. J. Coord. Chem. 66, 1486–1496 (2013)CrossRefGoogle Scholar
  12. 12.
    Kumar, V.A.; Sarala, Y.; Siddikha, A.; Vanitha, S.; Babu, S.; Reddy, A.V.: Synthesis, Characterization Antimicrobial and Antioxidant Activities of 2,4-dihydroxybenzaldehyde-4-phenyl-3-thiosemicarbazone (DHBPTSC) and its Pd(II), Ni(II)dppm Mixed ligand and Cu(II) complex having heterocyclic bases. J. Appl. Pharm. Sci. 8(04), 071–078 (2018)Google Scholar
  13. 13.
    Caires, A.C.: Recent advances involving palladium (II) complexes for the cancer therapy, Anti-cancer agents in medicinal chemistry (formerly current medicinal chemistry-anti-cancer agents. Anti-Cancer Agents Med. Chem. 7, 484–491 (2007)CrossRefGoogle Scholar
  14. 14.
    Garoufis, A.; Hadjikakou, S.; Hadjiliadis, N.: Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord. Chem. Rev. 253, 1384–1397 (2009)CrossRefGoogle Scholar
  15. 15.
    Hussain, S.; Ali, S.; Shahzadi, S.; Sharma, S.K.; Qanungo, K.; Bukhari, I.H.: Homobimetallic complexes containing Sn (IV) with acetylene dicarboxylic acid: their syntheses and structural interpretation by spectroscopic, semi-empirical, and DFT techniques. J. Coord. Chem. 65, 278–285 (2012)CrossRefGoogle Scholar
  16. 16.
    Bushra, P.; Hussain, B.I.; Shabbir, H.; Ghulam, A.K.; Muhammad, S.: Synthesis and spectroscopic characterization of mononuclear/binuclear organotin (IV) complexes with 1H-1, 2, 4-triazole-3-thiol&58; Comparative studies of their antibacterial/antifungal potencies. J. Serb. Chem. Soc. 80, 755–766 (2015)CrossRefGoogle Scholar
  17. 17.
    Hussain, S.; Bukhari, I.H.; Ali, S.; Shahzadi, S.; Shahid, M.; Munawar, K.S.: Synthesis and spectroscopic and thermogravimetric characterization of heterobimetallic complexes with Sn (IV) and Pd (II); DNA binding, alkaline phosphatase inhibition and biological activity studies. J. Coord. Chem. 68, 662–677 (2015)CrossRefGoogle Scholar
  18. 18.
    Hussain, S.; Ali, S.; Shahzadi, S.; Shahid, M.: Heterobimetallic complexes containing Sn (IV) and Pd (II) with 4-(2-Hydroxyethyl) piperazine-1-carbodithioic acid: synthesis, characterization and biological activities. Cogent Chem. 1, 1029038 (2015)CrossRefGoogle Scholar
  19. 19.
    Karenina, M.; Rosario, C.: Heterobimetallic complexes of tin: synthesis and dynamic behavior. VDM Verlag Dr. Müller, Paperback (2011)Google Scholar
  20. 20.
    Iram, S.; Ali, S.; Shahzadi, S.: Synthesis, characterization, and antimicrobial activity of heterobimetallic complexes of Sn(IV) and Zn(II) with 4-aminophenylacetic acid. Russ. J. Gen. Chem. 83, 2453–2459 (2013)CrossRefGoogle Scholar
  21. 21.
    Sharma, K.; Fahmi, N.; Singh, R.V.: Synthesis, characterization and toxicity of new heterobimetallic complexes of platinum(II) and palladium(II). Appl. Organomet. Chem. 15, 221–226 (2001)CrossRefGoogle Scholar
  22. 22.
    Vaz, R.H.; Abras, A.; Silva, R.M.: Oxidation addition of tin thiolates yielding new Sn-Pt heterobimetallic complexes. J. Braz. Chem. 9, 57–62 (1998)CrossRefGoogle Scholar
  23. 23.
    Gupta, A.N.; Kumar, V.; Singh, V.; Rajput, A.; Prasad, L.B.; Drew, M.G.B.; Singh, N.: Influence of functionalities on the structure and luminescent properties of organotin(IV) dithiocarbamate complexes. J. Organomet. Chem. 787, 65–72 (2015)CrossRefGoogle Scholar
  24. 24.
    Morita, T.; Arai, T.; Sasai, H.; Shibasaki, M.: Utilization of heterobimetallic complexes as Lewis acids. Tetrahedron Asymmetry 9, 1445–1450 (1998)CrossRefGoogle Scholar
  25. 25.
    Deng, Y.; Karunaratne, C.; Csatary, E.; Tierney, D.L.; Wheeler, K.; Wang, H.: Chiral bimetallic catalysts derived from chiral metal phosphates: enantioselective three-component asymmetric aza diels alder reactions of cyclic ketones. J. Org. Chem. 80(16), 7984–7993 (2015)CrossRefGoogle Scholar
  26. 26.
    Ferraresso, L.G.; de Arruda, E.G.R.; de Moraes, T.P.L.; Fazzi, R.B.; Da Costa Ferreira, A.M.; Abbehausan, C.: Copper(II) and zinc(II) dinuclear enzymes model compounds: the nature of the metal ion in the biological function. J. Mol. Struct. 1150, 316–328 (2017)CrossRefGoogle Scholar
  27. 27.
    ArafatY, Ali S.; Shahzadi, S.; Shahid, M.: Preparation, characterization, and antimicrobial activities of bimetallic complexes of sarcosine with Zn(II) and Sn(IV). Bioinorg. Chem. Appl. 2013, 351262 (2013)Google Scholar
  28. 28.
    Tome, d; Bos, C.: Lysine requirement through the human life cycle. J. Nutr. 137, 1642S–1645S (2007)CrossRefGoogle Scholar
  29. 29.
    Tanphaichitr, V.; Broquist, H.P.: Role of lysine and -N-trimethyllysine in carnitine biosynthesis. II. Studies in the rat. J. Biol. Chem. 248, 2176–2181 (1973)Google Scholar
  30. 30.
    Brautaset, T., Ellingsen, T.E.; Eggeling, L. Lysine industrial uses and production. In book: Reference Module in Life Sciences. (2017).
  31. 31.
    Armarego, W.L.; Chai, C.L.L.: Purification of laboratory chemicals. Butterworth-Heinemann, Oxford (2013)Google Scholar
  32. 32.
    Fritsche, T.R.; McDermott, P.F.; Shryock, T.R.; Walker, R.D.: Agar dilution and disk diffusion susceptibility testing of Campylobacter spp. J. Clin. Microbiol. 45, 2758–2759 (2007)CrossRefGoogle Scholar
  33. 33.
    Sarker, S.D.; Nahar, L.; Kumarasamy, Y.: Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42, 321–324 (2007)CrossRefGoogle Scholar
  34. 34.
    Sharma, P.; Sharma, J.D.: In vitro hemolysis of human erythrocytes—by plant extracts with antiplasmodial activity. J. Ethnopharmacol. 74, 239–243 (2001)CrossRefGoogle Scholar
  35. 35.
    Eng, G.; Song, X.; Zapata, A.; de Dios, A.C.; Casabianca, L.; Pike, R.D.: Synthesis, structural and larvicidal studies of some triorganotin 2-(p-chlorophenyl)-3-methylbutyrates. J. Organomet. Chem. 692, 1398–1404 (2007)CrossRefGoogle Scholar
  36. 36.
    Faraglia, G.; Fregona, D.; Sitran, S.; Giovagnini, L.; Marzano, C.; Baccichetti, F.; Casellato, U.; Graziani, R.: Platinum (II) and palladium (II) complexes with dithiocarbamates and amines: synthesis, characterization and cell assay. J. Inorg. Biochem. 83, 31–40 (2001)CrossRefGoogle Scholar
  37. 37.
    Hussain, S.; Ali, S.; Shahzadi, S.; Sharma, S.K.; Qanungo, K.; Altaf, M.; Evans, H.S.: Synthesis, characterization, and semi-empirical study of Organotin (IV) complexes with 4-(Hydroxymethyl) piperidine-1-carbodithioic Acid: x-ray structure of Chlorodimethyl-(4-hydroxymethyl piperidine-1-carbodithioato-S, S′) tin (IV). Phosphorus, Sulfur, Silicon. Relat. Elem. 186, 542–551 (2011)CrossRefGoogle Scholar
  38. 38.
    Bonati, F.; Ugo, R.: Organotin (iv) n, n-disubstituted dithiocarbamates. J. Organomet. Chem. 10, 257–268 (1967)CrossRefGoogle Scholar
  39. 39.
    Hussain, S.; Ali, S.; Shahzadi, S.; Rizzoli, C.; Shahid, M.: Diorganotin (IV) complexes with monohydrate disodium salt of iminodiacetic acid: synthesis, characterization, crystal structure and biological activities. J. Chin. Chem. Soc. 62, 793–802 (2015)CrossRefGoogle Scholar
  40. 40.
    Shahzadi, S.; Ali, S.: Structural chemistry of organotin(IV) complexes. J. Iran. Chem. Soc. 5, 16–28 (2008)CrossRefGoogle Scholar
  41. 41.
    Hussain, S.; Saqib, S.; Shahzadi, S.; Sharma, S.K.; Qanungo, K.; Shahid, M.: Synthesis, characterization, semiempirical and biological activities of organotin(iv) carboxylates with 4-piperidinecarboxylic acid. Bioinorg. Chem. Appl. 2014, 959203 (2014)CrossRefGoogle Scholar
  42. 42.
    Eng, G.; Song, X.; Zapata, A.; de Dios, A.C.; Casabianca, L.; Pike, R.D.: Synthesis, structural and larvicidal studies of som triorganotin 2-(p-chlorophenyl)-3-methylbutyrates. J. Organomet. Chem. 692(6), 1398–1404 (2007)CrossRefGoogle Scholar
  43. 43.
    Baul, T.S.B.; Dhar, S.; Pyke, S.M.; Tiekink, E.R.T.; Rivarola, E.; Butcher, R.; Smith, F.E.: Synthesis and characterization of triorganotin(IV) complexes of 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acids.: crystal and molecular structures of a series of triphenyltin 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoates (aryl = phenyl, 2-methylphenyl, 3-methylphenyl and 4-methoxyphenyl). J. Organomet. Chem. 633, 7–17 (2001)CrossRefGoogle Scholar
  44. 44.
    Tarassoli, A.; Sedaghat, T.; Neumüller, B.; Ghassemzadeh, M.: Synthesis, spectroscopic investigations and crystal structures of organotin(IV) derivatives of 2-amino-1-cyclopentene-1-carbodithioic acid. Inorg. Chim. Acta 318, 15–22 (2001)CrossRefGoogle Scholar
  45. 45.
    Aziz-ur-Rehman, A.; Hussain, M.; Zia-ur-Rehman, A.; Ali, S.; Rauf, A.; Nasim, F.; Helliwell, M.: Self-assembled pentagonal bipyramidal and skew trapezoidal organotin(IV) complexes of substituted benzoic acids: their antibacterial, antifungal, cytotoxic, insecticidal and urease inhibition activities. Inorg. Chi. Acta. 370, 27–35 (2011)CrossRefGoogle Scholar
  46. 46.
    Shahzadi, S.; Shahid, K.; Ali, S.: Spectral characterization and biocidal activity of organotin (IV)(E)-3-[(2′, 6′-dichlorophenylamido)] propenoates. J. Coord. Chem. 60, 2637–2648 (2007)CrossRefGoogle Scholar
  47. 47.
    World Health Organization Global action plan on antimicrobial resistance. WHO Press 1–28 (2015).Google Scholar
  48. 48.
    Adeyemi, J.; Onwudiwe, D.C.: Review organotin(IV) dithiocarbamate complexes: chemistry and biological activity. Molecules 23, 2571 (2018)CrossRefGoogle Scholar
  49. 49.
    Sharma, N.; Kumar, V.; Kumari, M.; Pathania, A.; Chaudhry, S.C.: Synthesis, characterization, and antibacterial activity of triorganotin(IV) complexes of 2-methylphenol. J. Coord. Chem. 63, 3498–3515 (2010)CrossRefGoogle Scholar
  50. 50.
    Khan, N.; Farina, Y.; Mun, L.K.; Rajab, N.F.; Awang, N.: Syntheses, spectral characterization, X-ray studies and in vitro cytotoxic activities of triorganotin(IV) derivatives of p-substituted N-methylbenzylaminedithiocarbamates. J. Mol. Struct. 1076, 403–410 (2014)CrossRefGoogle Scholar
  51. 51.
    Rehman, A.; Siddiqui, S.Z.; Abbasi, M.A.; Abbas, N.; Khan, K.M.; Shahid, M.; Mahmood, Y.; Akhtar, M.N.; Lajis, N.H.: Synthesis, antibacterial screening and hemolytic activity of S-substituted derivatives of 5-benzyl-1, 3, 4-oxadiazole-2-thiol. Int. J. Pharm. Pharm. Sci. 4, 676–680 (2012)Google Scholar
  52. 52.
    Kadu, R.; Roy, H.; Singh, V.K.: Diphenyltin(IV) dithiocarbamate macrocyclic scaffolds as potent apoptosis inducers for human cancer HEP 3B and IMR 32 cells: synthesis, spectral characterization, density functional theory study and in vitro cytotoxicity. Appl. Organomet. Chem. 29, 746–755 (2015)CrossRefGoogle Scholar
  53. 53.
    Mariam, S.; Hussain, S.; Ali, S.; Shahzadi, S.; Ramzan, S.; Shahid, M.: Homobimetallic (Sn, Sn) complexes with [2-Dithiocarboxy(methyl)amino]acetic acid: synthesis, characterization and biological studies. Iran J Sci Technol Trans Sci. 42, 1277–1284 (2018)CrossRefGoogle Scholar
  54. 54.
    Yin, H.D.; Xue, S.C.: Synthesis and characterization of organotin complexes with dithiocarbamates and crystal structures of (4-NCC6H4CH2)2Sn(S2CNEt2)2 and (2-ClC6H4CH2)2 Sn(Cl)S2CNBz2. Appl. Organomet. Chem. 20, 283–289 (2006)CrossRefGoogle Scholar
  55. 55.
    Awang, N.; Baba, I.; Yamin, B.M.; Othman, M.S.; Kamaludin, N.F.: Synthesis, characterization and biological activities of organotin (IV) methylcyclohexyldithiocarbamate compounds. Am. J. Appl. Sci. 8(4), 310–317 (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  • Shabbir Hussain
    • 1
    Email author
  • Zark Zahid
    • 1
  • Muhammad Shahid
    • 2
  • Muhammad Amin Abid
    • 3
    • 4
  1. 1.Department of ChemistryLahore Garrison UniversityLahorePakistan
  2. 2.Department of Chemistry and BiochemistryUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of Basic Sciences and HumanitiesUniversity of Engineering and Technology, Lahore, Narowal CampusLahorePakistan
  4. 4.School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations