Advertisement

Flow Division at a Free-Surface, Three-Channel Intersection Using 1D Shallow Water Equations

  • Sajjad HaiderEmail author
  • Hamza Farooq Gabriel
  • Ammara Mubeen
Research Article - Civil Engineering
  • 15 Downloads

Abstract

One of the numerical techniques to treat the problem of free-surface flow division at a 90°, equal-width, three-channel junction is based on using a 1D shallow water equations model in tandem with a zero-crest height side weir model to simulate the outflow to the side channel (Kesserwani et al. in J Hydraul Eng 136(9):662–668, 2010; Ghostine et al. in Appl Math Comput 219:5070–5082, 2013). This method in subcritical flow case is put to test because of downstream backwater effect from the side channel which requires using the Villemonte equation to suitably reduce the flow due to weir submergence. This methodology is problematic as VE requires the downstream flow depth which lies outside the domain modeled. To overcome it, we proposed a new methodology which used the lateral weir height in the side channel as weir crest height at the junction instead of zero-crest height, thus obviating the need to use the Villemont equation. As the flow conditions at the junction can vary, the study uses a robust model based on an explicit, finite-volume technique, employing approximate Riemann solver of Roe for the simulation. The model is evaluated by comparing it with experimental, theoretical and 3D numerical model data in super-, trans- and subcritical flow regimes. For all the cases, the maximum error in the model predicted outflow ratio to side channel remained below 8%, while the max root-mean-squared error did not exceed 3.53%. The model performed satisfactorily, combining accuracy and computational efficiency.

Keywords

Shallow water equations Flow bifurcation T-junction Free-surface flow Side weir 

References

  1. 1.
    Lakshmana-Rao, N.S.; Sridharan, K.: Division of flow in open channels. Irrig. Power 24(4), 393–407 (1967)Google Scholar
  2. 2.
    Ramamurthy, A.S.; Tran, D.M.; Carballada, B.L.: Dividing flow in open channels. J. Hydraul. Eng. 116(3), 449–456 (1990)CrossRefGoogle Scholar
  3. 3.
    Hsu, C.C.; Tang, C.J.; Lee, W.J.; Shieh, M.Y.: Subcritical 90° equal-width open-channel dividing flow. J. Hydraul. Eng. 128(7), 716–720 (2002)CrossRefGoogle Scholar
  4. 4.
    El kadi Abderrezzak, K.; Lewicki, L.; Paquier, A.; Rivière, N.; Travin, G.: Division of critical flow at three-branch open-channel intersection. J. Hydraul. Res. 49(2), 231–238 (2011)CrossRefGoogle Scholar
  5. 5.
    Neary, V.S.; Sotiropoulos, F.; Odgaard, A.J.: Three-dimensional numerical model of lateral-intake inflows. J. Hydraul. Eng. 125(2), 126–140 (1999)CrossRefGoogle Scholar
  6. 6.
    Ramamurthy, A.S.; Qu, J.; Vo, D.: Numerical and experimental study of dividing open-channel flows. J. Hydraul. Eng. 133(10), 1135–1144 (2007)CrossRefGoogle Scholar
  7. 7.
    Kesserwani, G.; Vazquez, J.; Rivière, N.; Liang, Q.; Travin, G.; Mosé, R.: New approach for predicting flow bifurcation at right-angled open-channel junction. J. Hydraul. Eng. 136(9), 662–668 (2010)CrossRefGoogle Scholar
  8. 8.
    Rivière, N.; Travin, G.; Perkins, R.J.: Transcritical flows in open channel intersections. In: 32nd IAHR Congress, (CD-ROM) Venice, Italy, Paper SS05-11 (2007)Google Scholar
  9. 9.
    Ghostine, R.; Vazquez, J.; Terfous, A.; Rivière, N.; Ghenaim, A.; Mosé, R.: A comparative study of 1D and 2D approaches for simulating flows at right angled dividing junctions. Appl. Math. Comput. 219, 5070–5082 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Mizumura, K.; Yamasaka, M.; Adachi, J.: Side outflow from supercritical channel flow. J. Hydraul. Eng. 129(10), 769–774 (2003)CrossRefGoogle Scholar
  11. 11.
    Momplot, A.; Lipeme Kouyi, G.; Mignot, E.; Rivière, N.; Bertrand-Krajewski, J.-L.: Typology of the flow structures in dividing open channel flows. J. Hydraul. Res. 55(1), 63–71 (2017)CrossRefGoogle Scholar
  12. 12.
    Vetsch, D.; Siviglia, A.; Ehrbar, D.; et al.: System Manuals of BASEMENT. Laboratory of Hydraulics, Glaciology and Hydrology (VAW), ETH Zurich (2016)Google Scholar
  13. 13.
    Haider, S.; Gabriel, H.F.; Khan, S.A.: Supercritical flow simulation at a right channel junction. Comparison between a uniform and a sparse mesh. KSCE. J. Civ. Eng. 21, 2984–2990 (2017)CrossRefGoogle Scholar
  14. 14.
    Iqbal, M.; Ghumman, A.R.; Haider, S.; Hashmi, H.N.; Khan, M.A.: Application of Godunov type 2D model for simulating sediment flushing in a reservoir. Arab. J. Sci. Eng. (2018).  https://doi.org/10.1007/s13369-018-3381-1 Google Scholar
  15. 15.
    Lipeme Kouyi, G.; Rivière, N.; Vidalat, V.; Becquet, A.; Chocat, B.; Guinot, V.: Urban-flooding: one-dimensional modelling of the distribution of the discharges through cross-road intersections accounting for energy losses. Water Sci. Technol. 61(8), 2021–2026 (2010)CrossRefGoogle Scholar
  16. 16.
    Haider, S.; Paquier, A.; Morel, R.; Champagne, J.-Y.: Urban flood modelling using computational fluid dynamics. Proc. Inst. Civ. Eng. UK J. Water Marit. Eng. 156(2), 129–135 (2003)Google Scholar
  17. 17.
    Hager, W.H.: Wastewater Hydraulics: Theory and Practice, 2nd edn. Springer, Berlin (2010)CrossRefGoogle Scholar
  18. 18.
    Villemonte, J.: Submerged-weir discharge studies. Eng. News. Rec. 139(26), 54–56 (1947)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.NUST Institute of Civil EngineeringNational University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations