Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 7173–7185 | Cite as

Real-Time Simulation of Smart DC Microgrid with Decentralized Control System Under Source Disturbances

  • Ginbar EnsermuEmail author
  • Avik Bhattacharya
  • Nigamananda Panigrahy
Research Article - Electrical Engineering


Decentralized control of DC microgrid (dcµG) using hybrid renewable energy sources (RES) and battery energy storage system (BESS) which operate with and without grid-connected mode is proposed in this paper. In dcµG integrated with multiple RES and BESS, fluctuating output characteristics of the distributed generations (DGs) due to changing input conditions and the dynamic interactions of the source and load interface converters are main factors which cause stability problem of DC bus voltage. Thus, to solve this problem, the decentralized control scheme which uses bus voltage level as communication link in the control law is proposed in this paper. Accordingly, the control method realizes different operating modes based on the available generations and load demand. Maximum power and constant voltage controls schemes are applied in the DGs interfacing control to regulate the power and voltage variations due to changing input conditions. Furthermore, in the control strategy, the source and battery interfacing converters are controlled autonomously using the bus voltage level without any communication. This maintains the reliability and flexibility of the system. The proposed system model is developed with Matlab/Simulink SimPowerSystem and simulated with real-time simulation using OPAL-RT.


Constant voltage control DC microgrid MPPT control Real-time simulation Renewable energy resource 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This proposed dcµG model simulation was supported by the OPAL-RT Technologies India PVT LTD (North and East India). The authors thank Gagan Deep Singh Puri, a Sales Manager, for his support for providing real-time simulator device.


  1. 1.
    Kumar, M.; Srivastava, S.C.; Singh, S.N.: Control strategies of a DC microgrid for grid connected and islanded operations. IEEE Trans. Smart Grid 6(4), 1588–1601 (2015)CrossRefGoogle Scholar
  2. 2.
    Jadav, A.; Karkar, H.M.; Trivedi, I.N.: A Review of microgrid architectures and control strategy. J. Inst. Eng. Ser. B 98(6), 591–598 (2017)CrossRefGoogle Scholar
  3. 3.
    Jin, Z.; Sulligoi, G.; Cuzner, R.; Meng, L.; Vasquez, J.C.; Guerrero, J.M.: Next-generation shipboard DC power system: introduction smart grid and dc microgrid technologies into maritime electrical netowrks. IEEE Electrification Mag. 4(2), 45–57 (2016)CrossRefGoogle Scholar
  4. 4.
    Liu, N.; Wang, J.; Wang, L.: Distributed energy management for interconnected operation of combined heat and power-based microgrids with demand response. J. Mod. Power Syst. Clean Energy 5, 478 (2017)CrossRefGoogle Scholar
  5. 5.
    Adhikari, S.; Xu, Q.; Tang, Y.; et al.: Decentralized control of two DC microgrids interconnected with tie-line. J. Mod. Power Syst. Clean Energy 5, 599 (2017)CrossRefGoogle Scholar
  6. 6.
    Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M.: A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 44, 751–766 (2015)CrossRefGoogle Scholar
  7. 7.
    Lotfi, H.; Khodaei, A.: AC versus DC microgrid planning. IEEE Trans. Smart Grid 8(1), 296–304 (2017)CrossRefGoogle Scholar
  8. 8.
    Sanjeev, P.; Padhy, N.P.; Agarwal, P.: Peak energy management using renewable integrated DC microgrid. IEEE Trans. Smart Grid 9(5), 4906–4917 (2018)CrossRefGoogle Scholar
  9. 9.
    Shivam,; Dahiya, R.: Intelligent distributed control techniques for effective current sharing and voltage regulation in DC distributed systems. Arab. J. Sci. Eng. 42, 5071 (2017)CrossRefGoogle Scholar
  10. 10.
    Wu, D.; Tang, F.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M.: A control architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids. IEEE Trans. Smart Grid 6(3), 1156–1166 (2015)CrossRefGoogle Scholar
  11. 11.
    Li, X.; et al.: Flexible interlinking and coordinated power control of multiple DC microgrids clusters. IEEE Trans. Sustain. Energy 9(2), 904–915 (2018)CrossRefGoogle Scholar
  12. 12.
    Moayedi, S.; Davoudi, A.: distributed tertiary control of DC microgrid clusters. IEEE Trans. Power Electron. 31(2), 1717–1733 (2016)CrossRefGoogle Scholar
  13. 13.
    Meng, L.; Dragicevic, T.; Roldán-Pérez, J.; Vasquez, J.C.; Guerrero, J.M.: Modeling and sensitivity study of consensus algorithm-based distributed hierarchical control for DC microgrids. IEEE Trans. Smart Grid 7(3), 1504–1515 (2016)CrossRefGoogle Scholar
  14. 14.
    Moayedi, S.; Davoudi, A.: Cooperative power management in DC microgrid clusters. In: 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, pp. 75–80 (2015)Google Scholar
  15. 15.
    Che, L.; Shahidehpour, M.; Alabdulwahab, A.; Al-Turki, Y.: Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Trans. Smart Grid 6(6), 3042–3051 (2015)CrossRefGoogle Scholar
  16. 16.
    Singh, S.N.; Srivastava, S.C.; Kumar, M.; Ramamoorty, M.: Development of a control strategy for interconnection of islanded direct current microgrids. IET Renew. Power Gener. 9(3), 284–296 (2015)CrossRefGoogle Scholar
  17. 17.
    Peyghami, S.; Mokhtari, H.; Blaabjerg, F.: Decentralized load sharing in a low-voltage direct current microgrid with an adaptive droop approach based on a superimposed frequency. IEEE J. Emerg. Sel. Top. Power Electron. 5(3), 1205–1215 (2017)CrossRefGoogle Scholar
  18. 18.
    Shuai, Z.; Mo, S.; Wang, J.; et al.: Droop control method for load share and voltage regulation in high-voltage microgrids. J. Mod. Power Syst. Clean Energy 4, 76 (2016)CrossRefGoogle Scholar
  19. 19.
    García, P.; Arboleya, P.; Mohamed, B.; Vega, A.A.C.; Vega, M.C.: Implementation of a hybrid distributed/centralized real-time monitoring system for a DC/AC microgrid with energy storage capabilities. IEEE Trans. Ind. Inform. 12(5), 1900–1909 (2016)CrossRefGoogle Scholar
  20. 20.
    Federico, I.; Jose, E.; Luis, F.: Master–slave DC droop control for paralleling auxiliary DC/DC converters in electric bus applications. IET Power Electron. 10(10), 1156–1164 (2017)CrossRefGoogle Scholar
  21. 21.
    Tani, A.; Camara, M.B.; Dakyo, B.: Energy management in the decentralized generation systems based on renewable energy—ultracapacitors and battery to compensate the wind/load power fluctuations. IEEE Trans. Ind. Appl. 51(2), 1817–1827 (2015)CrossRefGoogle Scholar
  22. 22.
    Xu, Q.; et al.: A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous DC microgrid. IEEE Trans. Ind. Electron. 64(7), 5930–5941 (2017)CrossRefGoogle Scholar
  23. 23.
    Liserre, M.; Blaabjerg, F.; Hansen, S.: Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl. 41(5), 1281–1291 (2005)CrossRefGoogle Scholar
  24. 24.
    Wu, B.; Lang, Y.; Zargari, N.; Kouro, S.: Power Converters in Wind Energy Conversion Systems: Power Conversion and Control of Wind Energy Systems, vol. 76, ch. 4, 1st edn, pp. 164–175. Wiley (2011)Google Scholar
  25. 25.
    Elgendy, M.A.; Zahawi, B.; Atkinson, D.J.: Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sus. Energy 3(1), 21–33 (2012)CrossRefGoogle Scholar
  26. 26.
    Prasad, J.S.; Bhavsar, T.; Ghosh, R.; Narayanan, G.: Vector control of three-phase AC/DC front-end-converter. Sadhana 33(5), 591–613 (2008)CrossRefGoogle Scholar
  27. 27.
    Kaura, V.; Blasko, V.: Operation of a phase locked loop system under distorted utility conditions. IEEE Trans. Ind. Appl. 33(1), 58–63 (1997)CrossRefGoogle Scholar
  28. 28.
    Sun, K.; Zhang, L.; Xing, Y.; Guerrero, J.M.: A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage. IEEE Trans. Power Electron. 26(10), 3032–3045 (2011)CrossRefGoogle Scholar
  29. 29.
    Zhi, N.; Zhang, H.; Xiao, X.: Switching system stability analysis of DC microgrids with DBS control. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, pp. 3338–3345 (2016)Google Scholar
  30. 30.
    Tahim, A.P.N.; Pagano, D.J.; Lenz, E.; Stramosk, V.: Modeling and stability analysis of islanded DC microgrids under droop control. IEEE Trans. Power Electron. 30(8), 4597–4607 (2015)CrossRefGoogle Scholar
  31. 31.
    Erickson, R.W.: Input Filter Design: Fundamentals of Power Electronics, vol. 1, ch. 10, 1st edn, pp. 378–408. Springer (1997)Google Scholar
  32. 32.
    Iftikhar, M.U.; Sadarnac, D.; Karimi, C.: Input filter damping design for control loop stability of DC-DC converters. In: IEEE International Symposium on Industrial Electronics, pp. 353–358 (2007)Google Scholar
  33. 33.
    Yoo, C.; Choi, W.; Chung, I.; Won, D.; Hong, S.; Jang, B.: Hardware-in-the-loop simulation of DC microgrid with multi-agent system for emergency demand response. In: 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, pp. 1–6 (2012)Google Scholar
  34. 34.
    OPAL-RT Technologies, Presented at Online Brochure available at: Accessed 20 Nov 2018

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIIT RoorkeeRoorkeeIndia
  2. 2.OPAL-RT Technologies India Pvt LtdDelhiIndia

Personalised recommendations