Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 7149–7158 | Cite as

Life Estimation and Investigation of Dielectric Strength and Siloxane Backbone of High Voltage Silicone Rubber Composites Under Accelerated Multistress Conditions

  • Abraiz Khattak
  • Muhammad Amin
  • Adam KhanEmail author
  • Kashif Imran
Research Article - Electrical Engineering
  • 31 Downloads

Abstract

Room-temperature-vulcanized silicone rubber (RTV-SiR) is an excellent polymer for the coatings of high voltage outdoor insulators. However, like other polymers it also degrades by environmental stresses and lessens its service life. Silica-based composites may improve this behavior. To investigate the effect of multiple environmental stresses such as acid rain, heat, UV radiations, salt fog, etc., on silica-based composites, we prepared a sample neat SiR, two SiR nano-composites (5% and 2.5% nano-silica loading), an SiR micro-composite (15% micro-silica loading) and a hybrid composites (2% nano \(+\) 10% micro-silica loading). The prepared samples are subjected to accelerated multistress environment for a long term. Dielectric strength, leakage current and siloxane backbone are analyzed periodically during entire aging period. Composites showed improved characteristics and service life. Silicone rubber nano-composite with 5% nano-silica loading (SNC-5) showed longest estimated service life of 29 lab years in comparison with 19.8 lab years of neat silicone rubber. Similarly, after aging 17 kV/mm of dielectric of SNC-5 was highest among the all samples. Siloxane backbone also showed improved intactness in the case of SNC-5.

Keywords

High voltage Aging Polymeric insulators Composites Silicone rubber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006)Google Scholar
  2. 2.
    Balazs, A.C.; Emrick, T.; Russell, T.P.: Nanoparticle polymer composites: where two small worlds meet. Science 314(5802), 1107–1110 (2006)Google Scholar
  3. 3.
    Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S.: Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172, 566–581 (2018)Google Scholar
  4. 4.
    Kashfipour, M.A.; Mehra, N.; Zhu, J.: A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv. Compos. Hybrid Mater. 1(3), 415–439 (2018)Google Scholar
  5. 5.
    Lyu, M.Y.; Choi, T.G.: Research trends in polymer materials for use in lightweight vehicles. Int. J. Precis. Eng. Manuf. 16(1), 213–220 (2015)Google Scholar
  6. 6.
    Yan, L.; Chouw, N.; Jayaraman, K.: Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications. Mater. Des. 71, 17–25 (2015)Google Scholar
  7. 7.
    Naebe, M.; Abolhasani, M.M.; Khayyam, H.; Amini, A.; Fox, B.: Crack damage in polymers and composites: a review. Polym. Rev. 56(1), 31–69 (2016)Google Scholar
  8. 8.
    Barbero, E.J.: Introduction to Composite Materials Design. CRC Press, Boca Raton (2017)Google Scholar
  9. 9.
    Khan, Y.; Al-Arainy, A.A.; Malik, N.H.; Qureshi, M.I.; Al-Ammar, A.E.: Loss and recovery of hydrophobicity of EPDM insulators in simulated arid desert environment. In: Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific, pp. 1–4. IEEE (2010)Google Scholar
  10. 10.
    Vaillancourt, G.H.; Carignan, S.; Jean, C.: Experience with the detection of faulty composite insulators on high-voltage power lines by the electric field measurement method. IEEE Trans. Power Deliv. 13(2), 661–666 (1998)Google Scholar
  11. 11.
    Heger, G.; Vermeulen, H.J.; Holtzhausen, J.P.; Vosloo, W.L.: A comparative study of insulator materials exposed to high voltage AC and DC surface discharges. IEEE Trans. Dielectr. Electr. Insul. 17(2), 513–520 (2010)Google Scholar
  12. 12.
    Reddy, B.S.; Prasad, S.: Corona degradation of the polymer insulator samples under different fog conditions. IEEE Trans. Dielectr. Electr. Insul. 23(1), 359–367 (2016)Google Scholar
  13. 13.
    Li, C.; Hu, J.; Lin, C.; Zhang, B.; Zhang, G.; He, J.: Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators. J. Phys. D Appl. Phys. 50(6), 065301 (2017)Google Scholar
  14. 14.
    Song, W.; Shen, W.W.; Zhang, G.J.; Song, B.P.; Lang, Y.; Su, G.Q.; Mu, H.B.; Deng, J.B.: Aging characterization of high temperature vulcanized silicone rubber housing material used for outdoor insulation. IEEE Trans. Dielectr. Electr. Insul. 22(2), 961–969 (2015)Google Scholar
  15. 15.
    Kim, S.H.; Cherney, E.A.; Hackam, R.: The loss and recovery of hydrophobicity of RTV silicone rubber insulator coatings. IEEE Trans. Power Deliv. 5(3), 1491–1500 (1990)Google Scholar
  16. 16.
    Cherney, E.A.: Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. IEEE Trans. Dielectr. Electr. Insul. 12(6), 1108–1115 (2005)Google Scholar
  17. 17.
    Vlastos, A.E.; Sherif, E.: Experience from insulators with RTV silicon rubber sheds and shed coatings. IEEE Trans. Power Deliv. 5(4), 2030–2038 (1990)Google Scholar
  18. 18.
    Sartika, N.; Putra, N.R.M.: The study on leakage current characteristics and electrical properties of uncoated ceramic, RTV silicon rubber coated ceramic, and semiconducting glazed outdoor insulators. Int. J. Electr. Eng. Inform. 10(2), 318–336 (2018)Google Scholar
  19. 19.
    Xilin, W.; Han, W.; Xiaoran, X.; Zhidong, J.; Zhicheng, G.; Lin, Z.; Ruihai, L.: A new method to remove the aging RTV coatings on glass insulators. In: 2016 IEEE International Conference on Dielectrics (ICD), vol. 2, pp. 709–711. IEEE (2016)Google Scholar
  20. 20.
    Manfred, W.; Siegfried, N.: U.S. Patent No. 2,999,077. U.S. Patent and Trademark Office, Washington, DC (1961)Google Scholar
  21. 21.
    Grill, A.; Patel, V.V.; Gates, S.M.: U.S. Patent No. 6,479,110. U.S. Patent and Trademark Office, Washington, DC (2002)Google Scholar
  22. 22.
    Braley, S.: The silicones as subdermal engineering materials. Ann. N. Y. Acad. Sci. 146(1), 148–157 (1968)Google Scholar
  23. 23.
    Reynders, J.P.; Jandrell, I.R.; Reynders, S.M.: Review of aging and recovery of silicone rubber insulation for outdoor use. IEEE Trans. Dielectr. Electr. Insul. 6(5), 620–631 (1999)Google Scholar
  24. 24.
    Meguriya, N.: U.S. Patent No. 6,552,096. U.S. Patent and Trademark Office, Washington, DC (2003)Google Scholar
  25. 25.
    Nakamura, T., Hirabayashi, S.: U.S. Patent No. 5,582,885. U.S. Patent and Trademark Office, Washington, DC (1996)Google Scholar
  26. 26.
    Shimizu, K.; Watanabe, T.; Hamada, M.: U.S. Patent No. 4,360,566. U.S. Patent and Trademark Office, Washington, DC (1982)Google Scholar
  27. 27.
    Brown, J.B.; Fryer, M.P.; Randall, P.; Lu, M.: Silicones in plastic surgery: laboratory and clinical investigations, a preliminary report. Plast. Reconstr. Surg. 12(5), 374–376 (1953)Google Scholar
  28. 28.
    Lothongkam, C.; Siebler, D.; Heidmann, G.; Plath, R.; Gockenbach, E.: The influence of thermal aging on AC dielectric strength of transparent silicone rubbers for HV insulation. In: Proceedings of 2014 International Symposium on Electrical Insulating Materials (ISEIM), pp. 346–349. IEEE (2014)Google Scholar
  29. 29.
    Guo, Z.; Pereira, T.; Choi, O.; Wang, Y.; Hahn, H.T.: Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J. Mater. Chem. 16(27), 2800–8 (2006)Google Scholar
  30. 30.
    Schmidt, D.; Shah, D.; Giannelis, E.P.: New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid State Mater. Sci. 6(3), 205–12 (2002)Google Scholar
  31. 31.
    Zhao, H.; Li, R.K.: A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 47(9), 3207–17 (2006)Google Scholar
  32. 32.
    Xie, Q.; Niu, C.M.; Cheng, Y.H.: Preparation and electrical properties of titania nanowire-epoxy nanocomposites. In: Electrical Insulation Conference (EIC), IEEE 2015 June 7, pp. 450–453. IEEE (2015)Google Scholar
  33. 33.
    Preetha, P.; Thomas, M.J.: Life estimation of electrothermally stressed epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 21(3), 1154–60 (2014)Google Scholar
  34. 34.
    Pandey, J.C.; Gupta, N.: Thermal aging assessment of epoxy-based nanocomposites by space charge and conduction current measurements. In: Electrical Insulation Conference (EIC), 2014 June 8, pp. 59–63. IEEE (2014)Google Scholar
  35. 35.
    Du, B.X.; Han, T.; Su, J.G.: Tree characteristics in silicone rubber/SiO\(_2\) nanocomposites under low temperature. IEEE Trans. Dielectr. Electr. Insul. 21(2), 503–510 (2014)Google Scholar
  36. 36.
    Du, B.X.; Li, Z.L.: Surface charge and dc flashover characteristics of direct-fluorinated SiR/SiO\(_2\) nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 21(6), 2602–2610 (2014)Google Scholar
  37. 37.
    Du, B.X.; Han, T.; Su, J.G.: Effect of low temperature on tree characteristics in silicone rubber with different power frequency. IEEE Trans. Dielectr. Electr. Insul. 21(4), 1880–1886 (2014)Google Scholar
  38. 38.
    Dimitropoulou, M.; Pylarinos, D.; Siderakis, K.; Thalassinakis, E.; Danikas, M.: Comparative investigation of pollution accumulation and natural cleaning for different HV insulators. Eng. Technol. Appl. Sci. Res. 5(2), 764 (2015)Google Scholar
  39. 39.
    Ansorge, S.; Schmuck, F.; Papailiou, K.O.: Impact of different fillers and filler treatments on the erosion suppression mechanism of silicone rubber for use as outdoor insulation material. IEEE Trans. Dielectr. Electr. Insul. 22(2), 979–988 (2015)Google Scholar
  40. 40.
    Liu, D.; Song, L.; Song, H.; Chen, J.; Tian, Q.; Chen, L.; Sun, L.; Lu, A.; Huang, C.; Sun, G.: Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos. Sci. Technol. 165, 373–379 (2018)Google Scholar
  41. 41.
    Zhang, Y.; Zeng, X.; Lai, X.; Li, H.; Huang, X.: Significant improvement of urethane-containing silane on the tracking and erosion resistance of silicone rubber/silica nanocomposite by enhancing the interfacial effect. Polym. Test. 69, 16–25 (2018)Google Scholar
  42. 42.
    Khattak, A.; Amin, M.: Accelerated aging investigation of high voltage EPDM/silica composite insulators. J. Polym. Eng. 36(2), 199–209 (2016)Google Scholar
  43. 43.
    Khattak, A.; Iqbal, M.; Amin, M.: Aging analysis of high voltage silicone rubber/silica nanocomposites under accelerated weathering conditions. Sci. Eng. Compos. Mater. 24(5), 679–689 (2017)Google Scholar
  44. 44.
    Amin, M.; Khattak, A.; Ali, M.: Life estimation and investigation of dielectric strength of multistressed high-voltage epoxy micro and nanocomposites. Micro Nano Lett. 11(11), 765–768 (2016)Google Scholar
  45. 45.
    Khattak, A.; Amin, M.; Iqbal, M.: Long term accelerated aging investigation of an epoxy/silica nanocomposite for high voltage insulation. J. Polym. Eng. 38(3), 263–269 (2018)Google Scholar
  46. 46.
    Khattak, A.; Amin, M.: Influence of stresses and fillers on the aging behaviour of polymeric insulators. Rev. Adv. Mater. Sci. 44, 194–205 (2016)Google Scholar
  47. 47.
    Khattak, A.; Amin, M.; Iqbal, M.; Abbas, N.: Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites. Mater. Res. Express 5, 025003 (2018)Google Scholar
  48. 48.
    ASTM D149-09: Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies. ASTM International, West Conshohocken, PA (2013). www.astm.org
  49. 49.
    IEC 60243-1:2013. Electric strength of insulating materials—test methods—part 1: tests at power frequenciesGoogle Scholar
  50. 50.
    Amin, M.; Amin, S.; Ali, M.: Monitoring of leakage current for composite insulators and electrical devices. Rev. Adv. Mater. Sci. 21, 75–89 (2009)Google Scholar
  51. 51.
    Mohammed, A.; Sundararajan, R.: Investigation of breakdown of an EPSB polymeric arrester based on the life estimation using a multiple regression model. In: Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2003, pp. 365–368. IEEE (2003)Google Scholar
  52. 52.
    Venkatesulu, B.: Studies on polymeric micro/nanocomposites for outdoor high voltage insulation. Doctoral dissertation G23812 (2011)Google Scholar
  53. 53.
    Ramirez, I.: A study of nanofilled silicone dielectrics for outdoor insulation. Doctoral dissertation, PhD thesis, University of Waterloo, Waterloo, Ontario, Canada (2009)Google Scholar
  54. 54.
    Amin, M.; Ali, M.: Polymer nanocomposites for high voltage outdoor insulation applications. Rev. Adv. Mater. Sci. 40(3), 276–294 (2015)Google Scholar
  55. 55.
    Chang, B.P.; Akil, H.M.; Nasir, R.B.M.: Comparative study of micro-and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear 297(1), 1120–1127 (2013)Google Scholar
  56. 56.
    Momen, G.; Farzaneh, M.: Survey of micro/nano filler use to improve silicone rubber for outdoor insulators. Rev. Adv. Mater. Sci. 27(1), 1–13 (2011)Google Scholar
  57. 57.
    Nelson, J.K.; Hu, Y.: The impact of nanocomposite formulations on electrical voltage endurance. In: Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004, vol. 2, pp. 832–835. IEEE (2004)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical Power Engineering, U.S.-Pakistan Center for Advanced Studies in EnergyNational University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Department of Electrical EngineeringGhulam Ishaq Khan Institute (GIKI) of Engineering Sciences and TechnologyTopiPakistan
  3. 3.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations