Advertisement

A New Approach in Predicting Gas Adsorption Isotherms and Isosteric Heats Based on Two-Dimensional Equations of State

  • Ali Bakhtyari
  • Masoud MofarahiEmail author
Research Article - Chemical Engineering
  • 23 Downloads

Abstract

The present study provides a modified approach in determining gas adsorption equilibria based on two-dimensional equations of state (2-D EOS). The proposed model utilizes temperature-dependent parameters in the general form of the 2-D EOS. These parameters were considered similar to other well-known isotherm models, such as Langmuir as specifics function of temperature. The proposed model was examined against various experimental single- and multi-component adsorption isotherm data. In most of the investigated cases, the proposed model reduces the error of predictions compared with temperature-independent two-dimensional equations of state. Moreover, utilizing temperature-dependent two-dimensional equations of state, isosteric heat of adsorption was theoretically obtained and compared with experimental heats of adsorption for different homogeneous and heterogeneous adsorption systems. Applying temperature-dependent parameters within 2-D EOS enables us to describe the heterogeneity of considered adsorption systems quite well. Predicted isosteric heats are in good accordance with the experimental data.

Keywords

Gas adsorption equilibria Two-dimensional equations of state Isosteric heat Adsorption isotherm Thermodynamic prediction 

Notations

2-D EOS

Two-dimensional equation of state

a

Specific molar volume of adsorbent (\(\hbox {m}^{2}/\hbox {mol}\))

A

Surface area per mass of adsorbent (\(\hbox {m}^{2}/\hbox {kg}\))

%AAD

percentage of absolute average deviation

f

Fugacity (kPa)

k

Parameter of the TI 2-D EOS model (mol/kPa kg)

\(k_{1}\)

Parameter of the TD model (mol/kPa kg)

\(k_{2}\)

Parameter of the TD model parameter (\(\hbox {kPa\,m}^{3}/\)\(\hbox {mol}\))

m

2-D EOS constant (dimensionless)

M

Mass of adsorbent (kg)

n

Mole of components in adsorbed phase (mol)

NDP

Number of data points

R

Universal gas constant (\(\hbox {kPa}\,\hbox {m}^{3}/\hbox {mol}\,\hbox {K}\))

\(S_{1},S_{2}\)

Terms in the isosteric heat of adsorption equations

T

Temperature (K)

\(T_{1},T_{2}\)

Terms in the fugacity equations of adsorbed phase in the TI model

\(\bar{{T}}_1 ,\bar{{T}}_2\)

Terms in the fugacity equations of adsorbed phase in the TD model

U

2-D EOS constant (dimensionless)

W

2-D EOS constant (dimensionless)

x

Mole fraction in adsorbed phase (dimensionless)

y

Mole fraction in gas phase (dimensionless)

Z

Compressibility factor of adsorbed phase (dimensionless)

\(\alpha \)

Parameter of the TI 2-D EOS model (kPa, \(\hbox {m}^{3}\,\hbox {kg/mol}^{2}\))

\(\alpha _{1}\)

Parameter of the TD model (kPa, \(\hbox {m}^{3}\,\hbox {kg/mol}^{2}\))

\(\alpha _{2}\)

Parameter of the TD model (kPa, \(\hbox {m}^{3}\,\hbox {kg/K\,mol}^{2}\))

\(\beta \)

Parameter of the TI 2-D EOS model (kg/mol)

\(\beta _{1}\)

Parameter of the TD model (kg/mol)

\(\beta _{2}\)

Parameter of the TD model (kg/mol K)

\(\theta \)

Fractional loading in the TI model (dimensionless)

\(\bar{{\theta }}\)

Fractional loading in the TD model (dimensionless)

\(\phi \)

Fugacity coefficient (dimensionless)

\(\pi \)

Spreading pressure (kPa m)

\(\varPsi \)

Deviation from ideality of isotherms in the TI model (dimensionless)

\({\varPsi }'\)

Deviation from ideality of Langmuir isotherm (dimensionless)

\(\bar{{\varPsi }}\)

Deviation from ideality of isotherms in the TD model (dimensionless)

\(\omega \)

Mole adsorbed per mass of adsorbent (mol/kg)

Superscripts

a

Adsorbed phase

cal

Calculated

exp

Experimental

g

Gas phase

st

Isosteric

Subscripts

a

Adsorbed phase

\(\textit{i,j}\)

Components \(\textit{i,j}\) in mixture

mx

Mixture

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the Persian Gulf University, for the financial support, and for granting the required approval for this study.

Supplementary material

13369_2019_3838_MOESM1_ESM.docx (155 kb)
Supplementary material 1 (docx 155 KB)

References

  1. 1.
    Bakhtyari, A.; Mofarahi, M.: Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A. J. Chem. Eng. Data 59(3), 626–639 (2014)Google Scholar
  2. 2.
    Mofarahi, M.; Bakhtyari, A.: Experimental investigation and thermodynamic modeling of CH\(_4\)/N\(_2\) adsorption on zeolite 13X. J. Chem. Eng. Data 60(3), 683–696 (2015)Google Scholar
  3. 3.
    Danish, M.; et al.: Response surface methodology approach for methyl orange dye removal using optimized Acacia mangium wood activated carbon. Wood Sci. Technol. 48(5), 1085–1105 (2014)Google Scholar
  4. 4.
    Danish, M.; et al.: Application of optimized large surface area date stone (Phoenix dactylifera) activated carbon for rhodamin B removal from aqueous solution: Box–Behnken design approach. Ecotoxicol. Environ. Saf. 139, 280–290 (2017)Google Scholar
  5. 5.
    Nasrullah, A.; et al.: High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int. J. Biol. Macromol. 107, 1792–1799 (2018)Google Scholar
  6. 6.
    Myers, A.; Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)Google Scholar
  7. 7.
    Myers, A.L.: Adsorption of gas mixtures—a thermodynamic approach. Ind. Eng. Chem. 60(5), 45–49 (1968)Google Scholar
  8. 8.
    Suwanayuen, S.; Danner, R.P.: A gas adsorption isotherm equation based on vacancy solution theory. AIChE J. 26(1), 68–76 (1980)Google Scholar
  9. 9.
    Suwanayuen, S.; Danner, R.P.: Vacancy solution theory of adsorption from gas mixtures. AIChE J. 26(1), 76–83 (1980)Google Scholar
  10. 10.
    Cochran, T.W.; Kabel, R.L.; Danner, R.P.: Vacancy solution theory of adsorption using Flory–Huggins activity coefficient equations. AIChE J. 31(2), 268–277 (1985)Google Scholar
  11. 11.
    Bering, B.; Dubinin, M.; Serpinsky, V.: Theory of volume filling for vapor adsorption. J. Colloid Interface Sci. 21(4), 378–393 (1966)Google Scholar
  12. 12.
    Moon, H.; Tien, C.: Further work on the prediction of gas-mixture adsorption equilibrium using the potential theory. Sep. Technol. 3(3), 161–167 (1993)Google Scholar
  13. 13.
    Shapiro, A.A.; Stenby, E.H.: Potential theory of multicomponent adsorption. J. Colloid Interface Sci. 201(2), 146–157 (1998)Google Scholar
  14. 14.
    Prausnitz, J.M.; Lichtenthaler, R.N.; de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria. Pearson Education, London (1998)Google Scholar
  15. 15.
    de Boer, J.H.: The Dynamical Character of Adsorption, vol. 76. Oxford University Press, Oxford (1953)Google Scholar
  16. 16.
    Do, D.D.: Adsorption Analysis: Equilibria and Kinetics, vol. 2. Imperial College Press, London (1998)Google Scholar
  17. 17.
    Ross, S.; Olivier, J.P.: On Physical Absorption. Interscience, New York (1964)Google Scholar
  18. 18.
    Hoory, S.; Prausnitz, J.: Monolayer adsorption of gas mixtures on homogeneous and heterogeneous solids. Chem. Eng. Sci. 22(7), 1025–1033 (1967)Google Scholar
  19. 19.
    Haydel, J.J.; Kobayashi, R.: Adsorption equilibria in methane–propane–silica gel system at high pressures. Ind. Eng. Chem. Fundam. 6(4), 546–554 (1967)Google Scholar
  20. 20.
    Payne, H.; Sturdevant, G.; Leland, T.: Improved two-dimensional equation of state to predict adsorption of pure and mixed hydrocarbons. Ind. Eng. Chem. Fundam. 7(3), 363–374 (1968)Google Scholar
  21. 21.
    Friederich, R.O.; Mullins, J.C.: Adsorption equilibria of binary hydrocarbon mixtures on homogeneous carbon black at \(25^{\circ } \text{ C }\). Ind. Eng. Chem. Fundam. 11(4), 439–445 (1972)Google Scholar
  22. 22.
    Sloan Jr., E.D.; Mullins, J.: Nonideality of binary adsorbed mixtures of benzene and Freon-11 on highly graphitized carbon at 298.15 K. Ind. Eng. Chem. Fundam. 14(4), 347–355 (1975)Google Scholar
  23. 23.
    DeGance, A.; Morgan, W.; Yee, D.: High pressure adsorption of methane, nitrogen and carbon dioxide on coal substrates. Fluid Phase Equilib. 82, 215–224 (1993)Google Scholar
  24. 24.
    DeGance, A.E.: Multicomponent high-pressure adsorption equilibria on carbon substrates: theory and data. Fluid Phase Equilib. 78, 99–137 (1992)Google Scholar
  25. 25.
    Garbacz, J.; et al.: Equation of physical adsorption on a homogeneous surface based on a two-dimensional analog of the Beattie–Bridgeman equation of a real gas state. Colloids Surf. A Physicochem. Eng. Aspects 119(2–3), 215–220 (1996)Google Scholar
  26. 26.
    Zheng, Y.; Gu, T.: Modified van der Waals Equation for the prediction of multicomponent isotherms. J. Colloid Interface Sci. 206(2), 457–463 (1998)Google Scholar
  27. 27.
    Zhou, C.: Modeling and Prediction of Pure and Multicomponent Gas Adsorption. Oklahoma State University, Stillwater (1994)Google Scholar
  28. 28.
    Zhou, C.; et al.: Predicting gas adsorption using two-dimensional equations of state. Ind. Eng. Chem. Res. 33(5), 1280–1289 (1994)Google Scholar
  29. 29.
    Sudibandriyo, M.; et al.: Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa. Langmuir 19(13), 5323–5331 (2003)Google Scholar
  30. 30.
    Fitzgerald, J.; et al.: Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal. Fuel 84(18), 2351–2363 (2005)Google Scholar
  31. 31.
    Peng, X.; et al.: Adsorption separation of CH\(_4\)/CO\(_2\) on mesocarbon microbeads: experiment and modeling. AIChE J. 52(3), 994–1003 (2006)Google Scholar
  32. 32.
    Mofarahi, M.; Hashemifard, S.: New mixing rule for predicting multi-component gas adsorption. Adsorption 17(2), 311–323 (2011)Google Scholar
  33. 33.
    Fotoohi, F.; et al.: Predicting pure and binary gas adsorption on activated carbon with two-dimensional cubic equations of state (2-D EOSs) and artificial neural network (ANN) method. Phys. Chem. Liq. 54(3), 281–302 (2016)Google Scholar
  34. 34.
    Van Ness, H.: Adsorption of gases on solids. Review of role of thermodynamics. Ind. Eng. Chem. Fundam. 8(3), 464–473 (1969)Google Scholar
  35. 35.
    Talu, O.; Kabel, R.: Isosteric heat of adsorption and the vacancy solution model. AIChE J. 33(3), 510–514 (1987)Google Scholar
  36. 36.
    Nieszporek, K.: Theoretical description of the calorimetric effects accompanying the mixed-gas adsorption equilibria by using the ideal adsorbed solution theory. Langmuir 18(24), 9334–9341 (2002)Google Scholar
  37. 37.
    Nieszporek, K.: The application of NIAS approach to describe enthalpic effects accompanying mixed-gas adsorption. Appl. Surf. Sci. 207(1–4), 208–218 (2003)Google Scholar
  38. 38.
    Nieszporek, K.: Potential Theory approach as a powerful tool in theoretical prediction of mixed-gas adsorption equilibria and their accompanying calorimetric effects. Chem. Eng. Sci. 60(10), 2763–2769 (2005)Google Scholar
  39. 39.
    Nieszporek, K.: Application of the vacancy solution theory to describe the enthalpic effects accompanying mixed-gas adsorption. Langmuir 22(23), 9623–9631 (2006)Google Scholar
  40. 40.
    Bhadra, S.J.; Ebner, A.D.; Ritter, J.A.: On the use of the dual process Langmuir model for predicting unary and binary isosteric heats of adsorption. Langmuir 28(17), 6935–6941 (2012)Google Scholar
  41. 41.
    Calleja, G.; Pau, J.; Calles, J.: Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios. J. Chem. Eng. Data 43(6), 994–1003 (1998)Google Scholar
  42. 42.
    Talu, O.; Zwiebel, I.: Multicomponent adsorption equilibria of nonideal mixtures. AIChE J. 32(8), 1263–1276 (1986)Google Scholar
  43. 43.
    Chen, Y.; Ritter, J.; Yang, R.: Nonideal adsorption from multicomponent gas mixtures at elevated pressures on a 5A molecular sieve. Chem. Eng. Sci. 45(9), 2877–2894 (1990)Google Scholar
  44. 44.
    Hyun, S.H.; Danner, R.P.: Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves. J. Chem. Eng. Data 27(2), 196–200 (1982)Google Scholar
  45. 45.
    Ritter, J.; Yang, R.: Equilibrium adsorption of multicomponent gas mixtures at elevated pressures. Ind. Eng. Chem. Res. 26(8), 1679–1686 (1987)Google Scholar
  46. 46.
    Reich, R.; Ziegler, W.T.; Rogers, K.A.: Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212–301 K and pressures to 35 atmospheres. Ind. Eng. Chem. Process Design Dev. 19(3), 336–344 (1980)Google Scholar
  47. 47.
    Gumma, S.: On Measurement, Analysis and Modeling of Mixed Gas Adsorption Equilibria. Cleveland State University, Cleveland (2003)Google Scholar
  48. 48.
    Nolan, J.T.; McKeehan, T.W.; Danner, R.P.: Equilibrium adsorption of oxygen, nitrogen, carbon monoxide, and their binary mixtures on molecular sieve type 10X. J. Chem. Eng. Data 26(2), 112–115 (1981)Google Scholar
  49. 49.
    Qiao, S.; Wang, K.; Hu, X.: Study of binary adsorption equilibrium of hydrocarbons in activated carbon using micropore size distribution. Langmuir 16(11), 5130–5136 (2000)Google Scholar
  50. 50.
    Loughlin, K.; Hasanain, M.; Abdul-Rehman, H.: Quaternary, ternary, binary, and pure component sorption on zeolites. 2. Light alkanes on Linde 5A and 13X zeolites at moderate to high pressures. Ind. Eng. Chem. Res. 29(7), 1535–1546 (1990)Google Scholar
  51. 51.
    Costa, E.; et al.: Adsorption equilibrium of ethylene, propane, propylene, carbon dioxide, and their mixtures on 13X zeolite. J. Chem. Eng. Data 36(2), 218–224 (1991)MathSciNetGoogle Scholar
  52. 52.
    Danner, R.P.; Choi, E.C.: Mixture adsorption equilibria of ethane and ethylene on 13X molecular sieves. Ind. Eng. Chem. Fundam. 17(4), 248–253 (1978)Google Scholar
  53. 53.
    He, Y.; Yun, J.-H.; Seaton, N.A.: Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon: isotherms and calorimetric heats of adsorption. Langmuir 20(16), 6668–6678 (2004)Google Scholar
  54. 54.
    Al-Baghli, N.A.; Loughlin, K.F.: Adsorption of methane, ethane, and ethylene on titanosilicate ETS-10 zeolite. J. Chem. Eng. Data 50(3), 843–848 (2005)Google Scholar
  55. 55.
    Al-Baghli, N.A.; Loughlin, K.F.: Binary and ternary adsorption of methane, ethane, and ethylene on titanosilicate ETS-10 zeolite. J. Chem. Eng. Data 51(1), 248–254 (2006)Google Scholar
  56. 56.
    Abdul-Rehman, H.; Hasanain, M.; Loughlin, K.: Quaternary, ternary, binary, and pure component sorption on zeolites. 1. Light alkanes on Linde S-115 silicalite at moderate to high pressures. Ind. Eng. Chem. Res. 29(7), 1525–1535 (1990)Google Scholar
  57. 57.
    Nakahara, T.; Hirata, M.; Omori, T.: Adsorption of hydrocarbons on a carbon molecular sieve. J. Chem. Eng. Data 19(4), 310–313 (1974)Google Scholar
  58. 58.
    Nakahara, T.; Hirata, M.; Mori, H.: Adsorption of a gaseous mixture of ethylene and propylene on a carbon molecular sieve. J. Chem. Eng. Data 27(3), 317–320 (1982)Google Scholar
  59. 59.
    Nakahara, T.; et al.: Adsorption of binary gaseous mixtures of ethylene–ethane and ethylene–propylene on a carbon molecular sieve. J. Chem. Eng. Data 29(2), 202–204 (1984)Google Scholar
  60. 60.
    Nakahara, T.; Wakai, T.: Adsorption of ethylene/ethane mixtures on a carbon molecular sieve. J. Chem. Eng. Data 32(1), 114–117 (1987)Google Scholar
  61. 61.
    Wu, Q.; et al.: Adsorption equilibrium of the mixture \(\text{ CH }_4+ \text{ N }_2+ \text{ H }_2\) on activated carbon. J. Chem. Eng. Data 50(2), 635–642 (2005)Google Scholar
  62. 62.
    Dunne, J.; et al.: Calorimetric heats of adsorption and adsorption isotherms. 1. \(\text{ O }_2, \text{ N }_2, \text{ Ar }, \text{ CO }_2, \text{ CH }_4, \text{ C }_2\text{ H }_6\), and \(\text{ SF }_6\) on silicalite. Langmuir 12(24), 5888–5895 (1996)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentShiraz UniversityShirazIran
  2. 2.Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical EngineeringPersian Gulf UniversityBushehrIran
  3. 3.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations