Computation of the Reliable and Quickest Data Path for Healthcare Services by Using Service-Level Agreements and Energy Constraints

  • Ashutosh SharmaEmail author
  • Rajiv Kumar
Research Article - Computer Engineering and Computer Science


Designing a mission critical system, such as a remote surgery, e-healthcare, e-banking, or e-shopping system, is a challenging task. The continuity and criticality of operation in mission critical systems depend on their delay, capacity, reliability, and energy. In this study, the energy available at each node and the service-level agreements (SLAs) are influenced by the continuity and criticality of data transmission. SLAs are drawn as requested service time and service mean time to failure. For the failure-free operation of mission critical systems, the SLA energy cooperative reliable and quickest path problem (SERQPP) algorithm is defined between a specified source and destination. Analysis indicates that the SERQPP path is a reliable and quickest option for data transmission in remote healthcare applications. The performance of the proposed algorithm is analyzed using mean number of qualifying service set (QSS) paths, average hop count, and average energy efficiency. Simulations are used to determine the variation trends for the SLAs, energy, numbers of nodes, distinct capacities, and data required for the computation of the SERQPP. In the results, it is showing that the number of QSS paths and average energy efficiency are increased with the increase in SLA and energy. In addition to this, quantitative and qualitative comparative study shows that the proposed algorithm outperforms in computation of SERQPP without increasing the time complexity. Finally, the major features of the SERQPP algorithm are discussed and highlighted.


SLA energy cooperation Critical healthcare application Service performance factor Quickest path problem Link reliability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are thankful for the financial grant for this paper from the research project titled, “Reliability Modeling and Optimized Planning of Risk-based Resilient Networks” sponsored by Indo-Polish Program under grant DST/INT/POL/P-04/2014.


  1. 1.
    Aceto, G.; Persico, V.; Pescapé, A.: The role of information and communication technologies in healthcare: taxonomies, perspectives, and challenges. J. Netw. Comput. Appl. 107, 125–154 (2018)CrossRefGoogle Scholar
  2. 2.
    Cook, D.J.; Duncan, G.; Sprint, G.; Fritz, R.L.: Using smart city technology to make healthcare smarter. Proc. IEEE 106, 708–722 (2018)CrossRefGoogle Scholar
  3. 3.
    Liu, H.; Ning, H.; Mu, Q.; Zheng, Y.; Zeng, J.; Yang, L.T.; Huang, R.; Ma, J.: A review of the smart world. Future Gener. Comput. Syst. (2017).
  4. 4.
    Sharma, A.; Kumar, R.: An optimal routing scheme for critical healthcare HTH services–an IOT perspective. In: 2017 Fourth International Conference on Image Information Processing (ICIIP), pp. 1–5 (2017)Google Scholar
  5. 5.
    Kumar, R.; Cholda, P.: A framework for continuity of mission-critical network services In: 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), pp. 1–3 (2015)Google Scholar
  6. 6.
    Redjem, R.; Marcon, E.: Operations management in the home care services: a heuristic for the caregivers’ routing problem. Flex. Serv. Manuf. J. 28, 280–303 (2016)CrossRefGoogle Scholar
  7. 7.
    Milburn, A.B.: Operations Research Applications in Home Healthcare. In: Hall, R. (ed.) Handbook of Healthcare System Scheduling, pp. 281–302. Springer, Boston (2012)CrossRefGoogle Scholar
  8. 8.
    Issabakhsh, M.; Hosseini-Motlagh, S.-M.; Pishvaee, M.-S.; Saghafi Nia, M.: A vehicle routing problem for modeling home healthcare: a case study. Int. J. Transp. Eng. 5, 211–228 (2018)Google Scholar
  9. 9.
    Sawand, A.; Djahel, S.; Zhang, Z.; Nait-Abdesselam, F.: Toward energy-efficient and trustworthy eHealth monitoring system. China Commun. 12, 46–65 (2015)CrossRefGoogle Scholar
  10. 10.
    Mounika, A.; Sasirekha, K.; Vigna Vinod Kumar, N.: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network (2017)Google Scholar
  11. 11.
    Fikar, C.; Hirsch, P.: Home health care routing and scheduling: a review. Comput. Oper. Res. 77, 86–95 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Duque, P.M.; Castro, M.; Sörensen, K.; Goos, P.: Home care service planning. The case of Landelijke Thuiszorg. Eur. J. Oper. Res. 243, 292–301 (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    Benabdouallah, M.; Bojji, C.: A review on coverage models applied to emergency location. Int. J. Emergency Manage. 14(2), 180–199 (2018)CrossRefGoogle Scholar
  14. 14.
    Marilly, E.; Martinot, O.; Betgé-Brezetz, S.; Delègue, G.: Requirements for service level agreement management. In: 2002 IEEE Workshop on IP Operations and Management, pp. 57–62 (2002)Google Scholar
  15. 15.
    Xia, M.; Tornatore, M.; Martel, C.U.; Mukherjee, B.: Risk-aware provisioning for optical WDM mesh networks. IEEE/ACM Trans. Netw. 19, 921–931 (2011)CrossRefGoogle Scholar
  16. 16.
    Fawaz, W.; Daheb, B.; Audouin, O.; Du-Pond, M.; Pujolle, G.: Service level agreement and provisioning in optical networks. IEEE Commun. Mag. 42, 36–43 (2004)CrossRefGoogle Scholar
  17. 17.
    Sharma, A.; Kumar, R.: Risk-energy aware service level agreement assessment for computing quickest path in computer networks. Int. J. Reliab. Saf. 13, 96–124 (2019)CrossRefGoogle Scholar
  18. 18.
    Boukhanovsky, A.V.; Krzhizhanovskaya, V.V.; Bubak, M.: Urgent Computing for Decision Support in Critical Situations. Elsevier, Amsterdam (2018)CrossRefGoogle Scholar
  19. 19.
    Calvete, H.I.; del-Pozo, L.; Iranzo, J.A.: The energy-constrained quickest path problem. Optim. Lett. 11, 1319–1339 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Duan, Z.; Zhang, Z.-L.; Hou, Y.T.: Service overlay networks: SLAs, QoS, and bandwidth provisioning. IEEE/ACM Trans. Netw. (TON) 11, 870–883 (2003)CrossRefGoogle Scholar
  21. 21.
    Calvete, H.I.; del-Pozo, L.; Iranzo, J.A.: Dealing with residual energy when transmitting data in energy-constrained capacitated networks. Eur. J. Oper. Res. 269, 602–620 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sharma, A.; Kumar, R.: Service-level agreement–energy cooperative quickest ambulance routing for critical healthcare services. Arab. J. Sci. Eng. 44, 1–18 (2019)CrossRefGoogle Scholar
  23. 23.
    Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B.: Network Flows. Elsevier, Amsterdam (1988)CrossRefzbMATHGoogle Scholar
  24. 24.
    Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B.: Network Flows. Elsevier, Amsterdam (2014)zbMATHGoogle Scholar
  25. 25.
    Martins, E.D.Q.V.; Dos Santos, J.L.E.: An algorithm for the quickest path problem. Oper. Res. Lett. 20, 195–198 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rosen, J.B.; Sun, S.-Z.; Xue, G.-L.: Algorithms for the quickest path problem and the enumeration of quickest paths. Comput. Oper. Res. 18, 579–584 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ruzika, S.; Thiemann, M.: Reliable and restricted quickest path problems. In: Pahl, J. (ed.) Network Optimization, pp. 309–314. Springer, Berlin (2011)CrossRefGoogle Scholar
  28. 28.
    Pascoal, M.; Captivo, M.; Clímaco, J.: Computational experiments with a lazy version of a K quickest simple path ranking algorithm. TOP 15, 372–382 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pascoal, M.M.; Captivo, M.E.V.; Clímaco, J.C.: An algorithm for ranking quickest simple paths. Comput. Oper. Res. 32, 509–520 (2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    Pascoal, M.M.; Captivo, M.E.V.; Clímaco, J.C.: A comprehensive survey on the quickest path problem. Ann. Oper. Res. 147, 5–21 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hamacher, H.; Tjandra, S.: Mathematical modelling of evacuation problems: a state of the art. In: Schreckenberg, M., Sharma, S. (eds.) Pedestrian and Evacuation Dynamics, pp. 227–266. Springer, Berlin (2002)Google Scholar
  32. 32.
    Smith, D.J.: Reliability, Maintainability and Risk: Practical Methods for Engineers. Elsevier, Oxford (2017)Google Scholar
  33. 33.
    Ahuja, R.K.: Minimum cost-reliability ratio path problem. Comput. Oper. Res. 15, 83–89 (1988)CrossRefzbMATHGoogle Scholar
  34. 34.
    Xue, G.: End-to-end data paths: quickest or most reliable? IEEE Commun. Lett. 2, 156–158 (1998)CrossRefGoogle Scholar
  35. 35.
    Tragoudas, S.: The most reliable data-path transmission. IEEE Trans. Reliab. 50, 281–285 (2001)CrossRefGoogle Scholar
  36. 36.
    Lin, Y.-K.: Extend the quickest path problem to the system reliability evaluation for a stochastic-flow network. Comput. Oper. Res. 30, 567–575 (2003)CrossRefzbMATHGoogle Scholar
  37. 37.
    Calvete, H.I.; del-Pozo, L.; Iranzo, J.A.: Algorithms for the quickest path problem and the reliable quickest path problem. Comput. Manag. Sci. 9, 255–272 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lin, Y.-K.: Spare routing reliability for a stochastic flow network through two minimal paths under budget constraint. IEEE Trans. Reliab. 59, 2–10 (2010)CrossRefGoogle Scholar
  39. 39.
    Lin, Y.-K.; Huang, C.-F.; Yeng, L.C.-L.; Cho, Y.-L.: Project reliability interval for a stochastic project network subject to time and budget constraints. IEEE Trans. Reliab. 66, 689–699 (2017)CrossRefGoogle Scholar
  40. 40.
    Chołda, P.; Jaglarz, P.: Energy-efficiency versus resilience: risk awareness view on dimensioning of optical networks with a sleep mode. Photonic Netw. Commun. 30, 43–58 (2015)CrossRefGoogle Scholar
  41. 41.
    Chołda, P.; Jaglarz, P.: Optimization/simulation-based risk mitigation in resilient green communication networks. J. Netw. Comput. Appl. 59, 134–157 (2016)CrossRefGoogle Scholar
  42. 42.
    Deng, X.; He, L.; Li, X.; Liu, Q.; Cai, L.; Chen, Z.: A reliable QoS-aware routing scheme for neighbor area network in smart grid. Peer-to-Peer Netw. Appl. 9, 616–627 (2016)CrossRefGoogle Scholar
  43. 43.
    Lin, Y.-K.; Huang, C.-F.; Chang, P.-C.: System reliability evaluation of a touch panel manufacturing system with defect rate and reworking. Reliab. Eng. Syst. Saf. 118, 51–60 (2013)CrossRefGoogle Scholar
  44. 44.
    Lin, Y.-K.; Chang, P.-C.: Evaluate the system reliability for a manufacturing network with reworking actions. Reliab. Eng. Syst. Saf. 106, 127–137 (2012)CrossRefGoogle Scholar
  45. 45.
    Gungor, V.C.; Hancke, G.P.: Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56, 4258–4265 (2009)CrossRefGoogle Scholar
  46. 46.
    Chen, Y.; Chin, Y.: The quickest path problem. Comput. Oper. Res. 17, 153–161 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Chen, G.-H.; Hung, Y.-C.: On the quickest path problem. Inf. Process. Lett. 46, 125–128 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Følstad, E.L.; Helvik, B.E.: The cost for meeting SLA dependability requirements; implications for customers and providers. Reliab. Eng. Syst. Saf. 145, 136–146 (2016)CrossRefGoogle Scholar
  49. 49.
    Vajanapoom, K.: Risk-based survivable network design. University of Pittsburgh (2008)Google Scholar
  50. 50.
    Vajanapoom, K.; Tipper, D.; Akavipat, S.: Risk based resilient network design. Telecommun. Syst. 52, 799–811 (2013)Google Scholar
  51. 51.
    Rausand, M.; Arnljot, H.: System Reliability Theory: Models, Statistical Methods, and Applications, vol. 396. Wiley, London (2004)zbMATHGoogle Scholar
  52. 52.
    Gopal, K.; Kumar, R.: An algorithm for computing the best-performing path in a computer network. Int. J. Perform. Eng. 3, 203–212 (2007)Google Scholar
  53. 53.
    Fredman, M.L.; Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM (JACM) 34, 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Zhang, S.; Martel, C.; Mukherjee, B.: Dynamic traffic grooming in elastic optical networks. IEEE J. Sel. Areas Commun. 31, 4–12 (2013)CrossRefGoogle Scholar
  55. 55.
    Chen, S.; Song, M.; Sahni, S.: Two techniques for fast computation of constrained shortest paths. In: Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, pp. 1348–1352 (2004)Google Scholar
  56. 56.
    Chen, S.; Song, M.; Sahni, S.: Two techniques for fast computation of constrained shortest paths. IEEE/ACM Trans. Netw. (TON) 16, 105–115 (2008)CrossRefGoogle Scholar
  57. 57.
    Sharma, A.; Kumar, R.: A framework for pre-computated multi-constrained quickest QoS path algorithm. J. Telecommun. Electron. Comput. Eng. (JTEC) 9, 73–77 (2017)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electronics and CommunicationJaypee University of Information TechnologySolanIndia

Personalised recommendations