Arabian Journal for Science and Engineering

, Volume 44, Issue 10, pp 8389–8399 | Cite as

Treatment of Ablution Greywater for Recycling by Alum Coagulation and Activated Carbon Adsorption

  • Saleh Khalaf Alharbi
  • Md ShafiquzzamanEmail author
  • Husnain Haider
  • Saleem S. AlSaleem
  • Abdul Razzaq Ghumman
Research Article - Civil Engineering


A considerable amount of ablution greywater (AGW) is being produced at mosques for cleaning certain parts of the body before performing prayers. In this study, alum coagulation followed by batch and continuous AC adsorption tests was conducted to examine the removal efficiency of turbidity, COD, and BOD to evaluate the recycling potential of AGW. In coagulation experiments, optimal overall removals of turbidity (95.8%), COD (31.6%) and BOD (50.0%) were achieved at 20 mg/L of alum dose. Further, the overall removal efficiencies were enhanced by AC adsorption for COD up to 70.8% and BOD up to 57.2% at 20 min adsorption equilibrium time with 0.2 g/L of optimal AC dose. The adsorption data was well fitted to the pseudo-second-order kinetics model. Both the Langmuir and Freundlich isotherm models were found suitable to characterize the adsorption of COD and BOD on AC. Maximum adsorption capacities were calculated 175 mg/g for COD and 88 mg/g for BOD. Continuous experiments of the AGW treatment process resulted in residual turbidity less than 1 NTU and both the COD and BOD values less than 10 mg/L. Treated AGW was found suitable for unrestricted irrigation, toilet flushing, and firefighting. The estimated cost for a full-scale treatment process (1.02 US$/\(\hbox {m}^{3})\) came out to be less than the existing cost of water production (1.09 US$/\(\hbox {m}^{3})\) in Saudi Arabia. The study revealed that the combination of alum coagulation and AC adsorption is a sustainable treatment option for recycling of AGW in arid and semiarid regions.


Ablution greywater (AGW) Recycling Alum coagulation AC adsorption Adsorption models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Assistance from Jesteen Joseph and Sultan Al-Qusayier for their cooperation in completion of water analysis and laboratory experiments is acknowledged gratefully.


  1. 1.
    Ouda, O.K.M.: Towards assessment of Saudi Arabia public awareness of water shortage problem. Resour. Environ. 3, 10–13 (2013)Google Scholar
  2. 2.
    Hellegers, P.; Immerzeel, W.; Droogers, P.: Economic concepts to address future water supply–demand imbalances in Iran, Morocco and Saudi Arabia. J. Hydrol. 502, 62–67 (2013)CrossRefGoogle Scholar
  3. 3.
    Haider, H.: Performance assessment framework for groundwater treatment plants in arid environments: a case of Buraydah, Saudi Arabia. Environ. Monit. Assess. 189(11), 544 (2017)CrossRefGoogle Scholar
  4. 4.
    Noutsopoulos, C.; Andreadakis, A.; Kouris, N.; Charchousi, D.; Mendrinou, A.; Galanil, A.; Koumaki, M.E.: Greywater characterization and loadings—physicochemical treatment to promote onsite reuse. J. Environ. Manag. 216, 337–346 (2018)CrossRefGoogle Scholar
  5. 5.
    Prathapar, S.A.; Ahmed, M.; Al-Adawi, S.; Al-Sidiari, S.: Design, construction and evaluation of an ablution water treatment unit in Oman: a case study. Int. J. Environ. Stud. 63, 283–292 (2006)CrossRefGoogle Scholar
  6. 6.
    Suratkon, A.; Chan, C.M.; AbRahman, T.S.T.: Smart WUDHU: recycling ablution water for sustainable living in Malaysia. J. Sustain. Dev. 7, 150 (2014)CrossRefGoogle Scholar
  7. 7.
    Mohamed, R.M.S.R.; Adnan, M.N.; Mohamed, M.A.; Kassim, A.H.M.: Conventional water filter (sand and gravel) for ablution water treatment, reuse potential, and its water savings. J. Sustain. Dev. 9, 35–43 (2016)CrossRefGoogle Scholar
  8. 8.
    Al-Jarallah, R.: Ablution water: prospects for reuse in flushing of toilets at mosques, schools, and offices in Saudi Arabia. King Abdul Aziz Univ. J. 14, 3–28 (2009)Google Scholar
  9. 9.
    Al-Wabel, M.I.: Simple system for handling and reuse of gray water resulted from ablution in mosques of Riyadh City, Saudi Arabia. In: International Conference on Environment Science and Engineering, pp. 42–45. IPCBEE, IACSIT Press, Singapore (2011)Google Scholar
  10. 10.
    De Gisi, S.; Casella, P.; Notarnicola, M.; Farina, R.: Grey water in buildings: a mini-review of guidelines, technologies and case studies. Civ. Eng. Environ. Syst. 33(1), 35–54 (2016)CrossRefGoogle Scholar
  11. 11.
    De Gisi, S.; Casella, P.; Notarnicola, M.: Grey water. In: Abraham, M. (ed.) Encyclopedia of Sustainable Technologies, Chapter: Reference Module in Earth Systems and Environmental Sciences, pp. 77–89. Elsevier, Amsterdam (2017)Google Scholar
  12. 12.
    March, J.G.; Gual, M.; Orozco, F.: Experiences on greywater re-use for toilet flushing in a hotel (Mallorca Island, Spain). Desalination 164, 241–247 (2004)CrossRefGoogle Scholar
  13. 13.
    Lin, C.J.; Lo, S.L.; Kuo, C.Y.; Wu, C.H.: Pilot-scale electrocoagulation with bipolar aluminium electrodes for on-site domestic greywater reuse. J. Environ. Eng. 131, 491–495 (2005)CrossRefGoogle Scholar
  14. 14.
    Pidou, M.; Avery, L.; Stephenson, T.; Jeffrey, P.; Parsons, S.A.; Liu, S.; Memon, F.A.; Jefferson, B.: Chemical solutions for greywater recycling. Chemosphere 7, 147–155 (2008)CrossRefGoogle Scholar
  15. 15.
    Gabarro, J.; Batchelli, L.; Balaguer, M.D.; Puig, S.; Colprim, J.: Grey water treatment at a sports centre for reuse in irrigation: a case study. Environ. Technol. 34, 1385–1392 (2013)CrossRefGoogle Scholar
  16. 16.
    Bani-Melhem, K.; Al-Qodah, Z.; Al-Shannag, M.; Qasaimeh, A.; Qtaishat, M.R.; Alkasrawi, M.: On the performance of real grey water treatment using a submerged membrane bioreactor system. J. Membr. Sci. 476, 40–49 (2015)CrossRefGoogle Scholar
  17. 17.
    Fountoulakis, M.S.; Markakis, N.; Petousi, I.; Manios, T.: Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Sci. Total Environ. 551–552, 706–711 (2016)CrossRefGoogle Scholar
  18. 18.
    Barzegara, G.; Wub, J.; Ghanbaric, F.: Enhanced treatment of greywater using electrocoagulation/ozonation: investigation of process parameters. Process Saf. Environ. Prot. 121, 125–132 (2019)CrossRefGoogle Scholar
  19. 19.
    Garcíaa, E.A.; Barceló, M.A.; Bonda, P.; Kellera, J.; Gernjaka, W.; Radjenovica, J.: Hybrid electrochemical-granular activated carbon system for the treatment of greywater. Chem. Eng. J. 352, 405–411 (2018)CrossRefGoogle Scholar
  20. 20.
    Ahmadi, M.; Ghanbari, F.: Optimizing COD removal from greywater by photoelectro-persulfate process using Box–Behnken design: assessment of effluent quality and electrical energy consumption. Environ. Sci. Pollut. Res. 23, 19350–19361 (2016)CrossRefGoogle Scholar
  21. 21.
    Skudi, J.B.; Wanjau, R.; Murungi, J.; Onindo, C.O.: Alum treated grey water for toilet flushing, mopping and laundry work. Hydrol. Curr. Res. 2, 1–4 (2011)CrossRefGoogle Scholar
  22. 22.
    Ghaitidak, D.M.; Yadav, K.D.: Characteristics and treatment of greywater—a review. Environ. Sci. Pollut. Res. 20, 2795–2809 (2013)CrossRefGoogle Scholar
  23. 23.
    Ghaitidak, D.M.; Yadav, K.D.: Effect of coagulant in greywater treatment for reuse: selection of optimal coagulation condition using analytic hierarchy process. Desalin. Water Treat. 55(4), 913–925 (2015)CrossRefGoogle Scholar
  24. 24.
    Kennedy, A.M.; Reinert, A.M.; Knappe, D.R.U.; Ferrer, I.; Summers, R.S.: Full and pilot-scale GAC adsorption of organic micropollutants. Water Res. 68, 238–248 (2015)CrossRefGoogle Scholar
  25. 25.
    Nayl, A.A.; Elkhashab, R.A.; El Malah, T.; Yakout, S.M.; El-Khateeb, M.A.; Ali, M.M.S.; Ali, H.M.: Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste. Environ Sci Pollut. Res. 24, 22284–22293 (2017)CrossRefGoogle Scholar
  26. 26.
    Al-Mughalles, M.H.; Rahman, R.A.; Sula, F.B.; Mahmud, M.; Abdullah, S.M.S.: Greywater treatment using PAC biofilm reactor and sand filter system. Aust. J. Basic Appl. Sci. 6, 283–292 (2012)Google Scholar
  27. 27.
    Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  28. 28.
    Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)Google Scholar
  29. 29.
    APHA: Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington (2005)Google Scholar
  30. 30.
    MWE: Technical Guidelines for the Use of Treated Sanitary Wastewater in Irrigation for Landscaping and Agricultural Irrigation. Ministry of Water and Electricity, Kingdom of Saudi Arabia (2006)Google Scholar
  31. 31.
    Jaafarzadeh, N.; Ghanbari, F.; Alvandi, M.: Integration of coagulation and electro-activated HSO\(_{5}\) to treat pulp and paper wastewater. Sustain. Environ. Res. 27, 223–229 (2017)CrossRefGoogle Scholar
  32. 32.
    Mollaha, M.Y.A.; Gomes, J.A.G.; Das, K.K.; Cocke, D.L.: Electrochemical treatment of Orange II dye solution—use of aluminum sacrificial electrodes and floc characterization. J. Hazard. Mater. 174, 851–858 (2010)CrossRefGoogle Scholar
  33. 33.
    Huang, Y.; Li, S.; Chen, J.; Zhang, X.; Chen, Y.: Adsorption of Pb (II) on mesoporous activated carbons fabricated from water hyacinth using H\(_{3}\)PO\(_{4}\) activation: adsorption capacity, kinetic and isotherm studies. Appl. Surf. Sci. 293, 160–168 (2014)CrossRefGoogle Scholar
  34. 34.
    Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X.: Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: equilibrium, kinetics and characterisation studies. J. Environ. Chem. Eng. 5, 679–698 (2017)CrossRefGoogle Scholar
  35. 35.
    Nandi, B.K.; Uppaluri, R.; Purkait, M.K.: Treatment of oily waste water using low-cost ceramic membrane: flux decline mechanism and economic feasibility. Sep. Sci. Technol. 44, 2840–2869 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering, College of EngineeringQassim UniversityBuraidahSaudi Arabia

Personalised recommendations