Advertisement

Temperature Dependence of the Heart Rates in the Blue Swimming Crab Portunus segnis (Forskal, 1775)

  • Khadija ZainalEmail author
  • Aysha Noorani
Research Article - Biological Sciences
  • 3 Downloads

Abstract

Portunus segnis (Forskal, 1775) has been referred to as Portunus pelagicus for very long time until Portunus species complex have been recognized based on their molecular distinction (Lai in Raffles Bull Zool 58(2):199–237, 2010). P. segnis are native species in the Arabian Gulf. Inter-moult stage adults were caught during February–November 2016 along the Northern coastal areas of Bahrain to investigate responses of cardiac activity to changes in water temperature normally encountered in their natural environment. Similar body sized individuals of both males and non-ovigerous females were maintained initially at \(20\,^{\circ }\hbox {C}\) in a re-circulating artificial seawater for 2 days prior to recordings of their heartbeats. Recordings were continued over 24–48 h for 39 crabs. Power lab-Ad-Instrument coupled with Impedance Technique adjoined by AC amplifier, Bio-Amp and LabChart-6 were used. The heart rates of P. segnis acutely followed rising or falling temperatures and a stable heart rate at a particular temperature indicated an acclimatization. Temperature coefficient values (\({Q}_{10})\) were between 0.1 and 8.6. At a temperature range of (20–30 \(\,^{\circ }\hbox {C}\)), \({Q}_{10}\) between 0.4 and 4 were significantly higher (\({p}< 0.05\)) compared to \({Q}_{10 }\) of 2–3 calculated at the lower temperature range (10–20 \(\,^{\circ }\hbox {C}\)). The higher values were obtained during either very fast or very low rates at 5–10 \(\,^{\circ }\hbox {C}\) and at \(\ge \) 30–40 \(\,^{\circ }\hbox {C}\), respectively. The upper lethal limits were \(40\,^{\circ }\hbox {C}\) and \(5\,^{\circ }\hbox {C}\) as the survival becomes limited at these two ‘extreme’ temperatures. Overall, at stable rates, \({Q}_{10}\) was between \(2.98\pm 2\) and \(2.26\pm 1\) for heart rates at thermal intervals of (20–30 \(\,^{\circ }\hbox {C}\)) and (10–20 \(\,^{\circ }\hbox {C}\)), respectively. Below \(5\,^{\circ }\hbox {C}\), the heart rate slows down progressively and the crabs become motionless and eventually die. The survival of these species was critical above \(40\,^{\circ }\hbox {C}\). Warm-adapted species such as P. segnis may be threatened by changes in temperatures as they may already be living at the upper limit of their thermal tolerance during the summer months. Understanding the thermal tolerance of P. segnis would help optimizing conditions for this valuable commercial species in aquaculture.

Keywords

Climate change Bahrain Arabian Gulf Portunidae Temperature Physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the research facilities provided by the Biology department, College of Science, University of Bahrain.

References

  1. 1.
    Apel, M.; Spiridonove, V.A.: Taxonomy and zoogeography of the portunid crabs (Crustacea: Decapoda: Brachyura: Portunidae) of the Arabian Gulf and adjacent waters. Fauna Arabia 17, 159–331 (1998)Google Scholar
  2. 2.
    Forskal, P.: Descriptiones animalium avium, amphibiorum, piscium, insectorum, vermium; quae in Itinere Orientali observavit. Petrus Forskal. Hafniae 9(xxxiv), 164 (1775)Google Scholar
  3. 3.
    Lai, J.C.Y.: A revision of the Portunus pelagicus (Linnaeus, 1758) species complex (Crustacean: Brachyura: Portunidae), with the recognition of four species. Raffles Bull. Zool. 58(2), 199–237 (2010)Google Scholar
  4. 4.
    WoRMS: http://www.marinespecies.org/aphia.php (2018). Accessed 10 Nov 2018
  5. 5.
    Galil, B.S.: The alien crustaceans in the Mediterranean Sea: an historical review. In: Galil, B.S., et al. (eds.) In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology and Impacts. Invading Nature—Springer Series in Invasion Ecology, vol. 6, pp. 377–401. Springer, Netherlands (2011)Google Scholar
  6. 6.
    CABI: Invasive species compendium—Portunus segnis. https://www.cabi.org/isc/datasheet/68649 (2018). Accessed 21 Jan 2019
  7. 7.
    Al-Rumaidh, M.: The biology, population dynamics and fishery management of the blue swimming crab, Portunus pelagicus (Linnaeus, 1758), in Bahraini waters. (Crustacea: Decapoda: Brachyura: Portunidae). http://e.bangor.ac.uk/4319/1/395867.pdf (2002). Accessed 4 Aug 2016
  8. 8.
    Zainal, K.: Relative growth and heterochely in the blue swimmer crab Portunus pelagicus (Linnaeus 1758) from the Kingdom of Bahrain. Arab J. Sci. Eng. 42, 75–84 (2017)CrossRefGoogle Scholar
  9. 9.
    Zainal, K.: Natural food and feeding of the commercial blue swimmer crab, Portunus Pelagicus (Linnaeus, 1758) along the coastal waters of the Kingdom of Bahrain. J. Assoc. Arab Univ. Basic Appl. Sci. 13(1), 1–7 (2013)Google Scholar
  10. 10.
    Kunsook, C.; Gajaseni, N.; Paphavasit, N.: The feeding ecology of the blue swimming crab, Portunus pelagicus (Linnaeus, 1758), at Kung Krabaen Bay, Chanthaburi Province, Thailand. Trop. Life Sci. Res. 25(1), 13–27 (2014)Google Scholar
  11. 11.
    Hosseini, M.; Vazirizade, A.; Parsa, Y.; Mansori, A.: Sex ratio, size distribution and seasonal abundance of blue swimming crab, Portunus pelagicus (Linnaeus, 1758) in Persian Gulf Coasts, Iran. World Appl. Sci. J. 17(7), 919–925 (2012)Google Scholar
  12. 12.
    Iftikar, F.; MacDonald, J.; Hickey, A.: Thermal limits of portunid crab heart mitochondria: could more thermo-stable mitochondria advantage invasive species? J. Exp. Mar. Biol. Ecol. 395(1–2), 232–239 (2010)CrossRefGoogle Scholar
  13. 13.
    Sugumar, V.; Vasu, P.: Effect of temperature on the biochemical constituents of the blue swimmer crab Portunus pelagicus. World Appl. Sci. J. 3(28), 382–391 (2013)Google Scholar
  14. 14.
    Rose, K.; Kelly, D.; Kemker, C.; Fitch, K.; Card, A.: Water Temperature. http://www.fondriest.com/environmentalmeasurements/parameters/water-quality/watertemperature (2014). Accessed 3 Aug 2016
  15. 15.
    Tomanek, L.; Zuzow, M.: The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. J. Exp. Biol. 213(20), 3559–3574 (2010)CrossRefGoogle Scholar
  16. 16.
    Sugumar, V.; Vijayalakshmi, G.; Saranya, K.: Molt cycle related changes and effect of short term starvation on the biochemical constituents of the blue swimmer crab Portunus pelagicus. Saudi J. Biol. Sci. 20(1), 93–103 (2013)CrossRefGoogle Scholar
  17. 17.
    Qari, S.: Thermal tolerance of the marine crab, Portunus pelagicus (Brachyura, Portunidae). Crustaceana 87(7), 827–833 (2014a)CrossRefGoogle Scholar
  18. 18.
    National Wildlife Federation: Global Warming and the Blue Crab. https://www.nwf.org/Wildlife/Threats-to-Wildlife/Global-Warming/Effects-on-Wildlife-and-Habitat/Blue-Crab.aspx (2016). Accessed 27 Dec 2016
  19. 19.
    Mcmahon, B.R.; Burnett, L.E.: The crustacean open circulatory system: a re-examination. Physiol. Zool. 63(1), 35–71 (1990)CrossRefGoogle Scholar
  20. 20.
    McMahon, B.: Control of cardiovascular function and its evolution in Crustacea. J. Exp. Biol. 204, 923–932 (2001)Google Scholar
  21. 21.
    McGaw, I.J.; Reiber, C.L.: Cardiovascular system of the blue crab Callinectes sapidus. J. Morphol. 251, 1–21 (2002)CrossRefGoogle Scholar
  22. 22.
    Wilkens, J.L.: Cardiac and circulatory control in decapod Crustacea with comparisons to molluscs. Cell. Mol. Life Sci. 43(9), 990–994 (1987)CrossRefGoogle Scholar
  23. 23.
    Paganini, A.W.; Miller, N.A.; Stillman, J.H.: Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 217, 3974–3980 (2014)CrossRefGoogle Scholar
  24. 24.
    Qari, S.: Heat shock response of the crab Portunus pelagicus: thermal stress and acclimation. J. Coast. Life Med. 2(8), 609–613 (2014b)Google Scholar
  25. 25.
    Ruscoe, I.M.; Shelley, C.C.; Williams, G.R.: The combined effect of temperature and salinity on the growth and survival of juvenile mud crabs (Scylla serrata Forskal). Aquaculture 238, 239–247 (2004)CrossRefGoogle Scholar
  26. 26.
    Worden, M.K.; Clark, C.M.; Conaway, M.; Qadri, S.A.: Temperature dependence of cardiac performance in the lobster Homarus americanus. J. Exp. Biol. 209, 1024–1034 (2006)CrossRefGoogle Scholar
  27. 27.
    Hines, A.H.; Johnson, E.G.; Darnell, M.Z.; Rittschof, D.; Miller, T.J.; Bauer, L.J.; Rodger, P.; Aguilar, R. (eds.): Predicting effects of climate change on blue crabs in Chesapeake Bay. In: Biology and Management of Exploited Crab Populations Under Climate Change. Alaska Sea Grant, University of Alaska Fairbanks (2010)Google Scholar
  28. 28.
    Wallace, J.C.: Feeding, starvation and metabolic rate in the shore crab Carcinus maenas. Mar. Biol. 20(4), 277–281 (1973)CrossRefGoogle Scholar
  29. 29.
    Pollard, T.G.; Larimer, J.L.: Circadian rhythmicity of heart rate in the Cray fish Procambarus clarkii. Physiol. Part A Physiol. 57(2), 221–226 (1977)Google Scholar
  30. 30.
    Maynard, D.M.: Circulation and heart function. In: Waterman, T.H., Chace Jr., F.R. (eds.) The Physiology of Crustacea Volume 1: Metabolism and Growth, pp. 161–226. Academic Press, New York (1960)CrossRefGoogle Scholar
  31. 31.
    Goudkamp, J.; Seebacher, F.; Ahern, M.; Franklin, C.: Physiological thermoregulation in a crustacean? Heart rate hysteresis in the freshwater crayfish Cherax destructor. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 138(3), 399–403 (2004)CrossRefGoogle Scholar
  32. 32.
    Larimer, J.L.: Sensory-induced modifications of ventilation and heart rate in crayfish. Comp. Biochem. Physiol. 12(1), 25–36 (1964)CrossRefGoogle Scholar
  33. 33.
    Ikhwanuddin, M.; Hayimad, T.; Ghazali, A.; Abdul Halim, S.; Abdullah, S.: Resistance test at early larval stage of blue swimming crab, Portunus pelagicus. Songklanakarin J. Sci. Technol. 38(1), 83–90 (2016)Google Scholar
  34. 34.
    Zainal, K.A.Y.; Taylor, A.C.; Atkinson, R.J.A.: The effect of temperature and hypoxia on the respiratory physiology of the squat lobsters Munida rugose and Munida sarsi (Anomura, galatheidae). Comp. Biochem. Physiol. 101, 557–567 (1992)CrossRefGoogle Scholar
  35. 35.
    De Wachter, B.; Wilkens, J.L.: Comparison of temperature effects on heart performance of the Dungeness crab, Cancer magister, in vitro and in vivo. Biol. Bull. 190, 385–395 (1996)CrossRefGoogle Scholar
  36. 36.
    Cumillaf, J.; Blanc, J.; Paschke, K.; Gebauer, P.; Diaz, F.; Re, D.; Chimal, M.; Vasquez, J.; Rosas, C.: Thermal biology of the sub-polar-temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae). Biol. Open 5(3), 220–228 (2016)CrossRefGoogle Scholar
  37. 37.
    Bryars, S.R.; Havenhand, J.N.: Effects of constant and varying temperatures on the development of blue swimmer crab Portunus pelagicus larvae: laboratory observations and field predictions for temperate coastal waters. J. Exp. Mar. Biol. Ecol. 329(2), 218–229 (2006)CrossRefGoogle Scholar
  38. 38.
    Talpur, A.D.; Ikhwanuddin, M.: Effects of stress tests on larvae of blue swimming crab, Portunus pelagicus (Linnaeus, 1758). Adv. Environ. Biol. 6(7), 1909 (2012)Google Scholar
  39. 39.
    Cossins, A.; Bowler, K.: The direct effects of temperature changes: 23–32. In: Temperature Biology of Animals, p. 327. Chapman and Hall, London (1987)Google Scholar
  40. 40.
    Wabnitz, C.C.C.; Lam, V.W.Y.; Reygondeau, G.; Teh, L.C.L.; Al-Abdulrazzak, D.; Khalfallah, M.; Cheung, W.W.L.: Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf. PLoS ONE 13(5), e0194537 (2018).  https://doi.org/10.1371/journal.pone.0194537 CrossRefGoogle Scholar
  41. 41.
    Morris, S.; Taylor, A.C.: Heart rate response of intertidal prawn Palaemon elegans to stimulated and in situ environmental changes. Mar. Ecol. Prog. Ser. 20(1–2), 127–136 (1984)CrossRefGoogle Scholar
  42. 42.
    McAllen, R.; Taylor, A.C.; Davenport, J.: The effects of temperature and oxygen partial pressure on the rate of oxygen consumption of the high-shore rock pool copepod Tigriopus brevicornis. Comp. Biochem. Physiol. Part A 123, 195–202 (1999)CrossRefGoogle Scholar
  43. 43.
    Ahsanullah, M.; Newell, R.C.: Factors affecting heart rate of shore crab Carcinus maenuas (L). Comp. Biochem. Physiol. 39, 277–287 (1971)CrossRefGoogle Scholar
  44. 44.
    World Weather and Climate Information: Climate Bahrain. https://weather-and-climate.com/average-monthly-min-max-Temperature,Bahrain (2016). Accessed 1 Jan 2017

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.University of BahrainSakhirKingdom of Bahrain

Personalised recommendations