Advertisement

Influence of Aging Temperature on Precipitation Kinetics, Morphology and Hardening Behavior of Al-7475 Alloy

  • E. F. Abo ZeidEmail author
Research Article - Physics
  • 10 Downloads

Abstract

In this research, the precipitation hardening behavior of Al-7475 alloy is investigated by a comprehensive experimental study on the relationship between thermal aging and evaluation of the kinetics and hardening properties of the alloy. The investigation was carried out using X-ray diffraction analysis (XRD), differential scanning calorimetry, scanning and transmission electron microscopy investigations and Vickers hardness (HV) test. The XRD results show that increasing the aging temperature, from 273 to 620 K, enhances the coarsening and evolution of precipitates which leads to an increase in the particle size. The thermal analysis shows the precipitation kinetics of the observed phases such as \(\upeta '\), \({T}'\), and \(\upeta \), based on the correlation between migration and diffusion of spread atoms in the Al matrix. In addition, the TEM micrographs indicate that needle-shaped precipitates distinguish the development of \(\upeta '\) and/or \({T}'\)- precipitates which at most contribute to the material strengthening. Moreover, the reaction order values of \(\upeta '\) and \(\upeta \)-precipitate nucleation indicate that the developed phases are radially grown.

Keywords

Al-7475 alloy Precipitation hardening Thermal Aging DSC \(\hbox {Mg}_{2}\)Zn phase Structural 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

My thanks go to Dr. Alaa M. Abd-Elnaiem (Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt) for his effective contribution and valuable help in the interpretation of some of the results.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Wawer, K.; Lewandwska, M.; Kurzydlowski, K.J.: Improvement of mechanical properties of a nanoaluminium alloy by precipitate strengthening. Arch. Metall. Mater. 57, 876–881 (2012)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y.; Weyland, M.; Milkereit, B.; Reich, M.; Rometsch, P.A.: Precipitation of a new platelet phase during the quenching of an Al–Zn–Mg–Cu alloy. Sci. Rep. 6, 23109–231018 (2016)CrossRefGoogle Scholar
  3. 3.
    Li, Z.; Xiong, B.; Zhang, Y.; Zhu, B.; Wang, F.; Liu, H.: Investigation of microstructural evolution and mechanical properties during two-step ageing treatment at 115 and 160 \(^{\circ }\)C in Al–Zn–Mg–Cu alloy pre-stretched thick plate. Mater. Charact. 59, 278–282 (2008)CrossRefGoogle Scholar
  4. 4.
    Abo Zeid, E.F.; Gaffar, M.A.; Gaber, A.; Mostafa, M.S.: Correlative study of the thermoelectric power, electrical resistivity and different precipitates of Al–1.12Mg2Si–0.35Si (mass %) alloy. J. Therm. Anal. Calorim. 122(3), 1269–1278 (2015)CrossRefGoogle Scholar
  5. 5.
    Dahle, A.K.; Nogita, K.; Mcdonald, S.D.; Dinnis, C.; Lu, L.: Eutectic modification and microstructure development in Al–Si alloys. Mater. Sci. Eng. A 413–414, 243–248 (2005)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y.; Milkereit, B.; Kessler, O.; Schick, C.; Rometsch, P.A.: Development of continuous cooling precipitation diagrams for aluminium alloys AA7150 and AA7020. J. Alloy. Compd. 584, 581–589 (2014)CrossRefGoogle Scholar
  7. 7.
    Prasada Rao, A.K.; Murty, B.S.; Chakrabarty, M.: Improvement in tensile strength and load bearing capacity during dry wear of Al–7Si alloy by combined grain refinement and modification. Mater. Sci. Eng. A 395, 323–326 (2005)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y.; Bettles, C.; Rometsch, P.A.: Effect of recrystallisation on Al3Zr dispersoid behaviour in thick plates of aluminium alloy AA7150. J. Mater. Sci. 49, 1709–1715 (2014)CrossRefGoogle Scholar
  9. 9.
    Hafiz, M.; Kobayashi, T.: Mechanical properties of modified and non-modified eutectic Al–Si alloys. J. Jpn. Inst. Light Metals 44(1), 28–34 (1994)CrossRefGoogle Scholar
  10. 10.
    Gaber, A.; Gaffar, M.A.; Mostafa, M.S.; Abo Zeid, E.F.: Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys. J. Alloy. Compd. 429, 167–175 (2007)CrossRefGoogle Scholar
  11. 11.
    Marioara, C.; Lefebvre, W.; Andersen, S.; Friis, J.: Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to \(\eta \) -MgZn2. J. Mater. Sci. 48, 3638–3651 (2013)CrossRefGoogle Scholar
  12. 12.
    Sukiman, N.L.; Gupta, R.K.; Zhang, R.; Buchheit, R.G.; Birbilis, N.: Influence of microalloying additions on Al–Mg alloy. Part 2: phase analysis and sensitization behavior. Corros. Eng. Sci. Technol. 49(4), 263–268 (2014)CrossRefGoogle Scholar
  13. 13.
    Miura, S.; Takuro, M.; Moriwaki, S.; Nagato, O.: Hardness and stress–strain curves of Al–Zn–Mg–Cu alloy single crystals. Mater. Trans. 49, 2709–2713 (2008)CrossRefGoogle Scholar
  14. 14.
    Chemingui, M.; Khitouni, M.; Mesmacque, G.; Kolsi, A.W.: Effect of heat treatment on plasticity of Al–Zn–Mg alloy: microstructure evolution and mechanical properties. Phys. Procedia 2(3), 1167–1174 (2009)CrossRefGoogle Scholar
  15. 15.
    Bovard, F.S.: Environmentally Induced Cracking of an Al–Zn–Mg–Cu Alloy. M Sc. Thesis, University of Pittsburgh, Pittsburgh (2005)Google Scholar
  16. 16.
    Afify, N.; Gaber, A.; Abbady, G.: Fine scale precipitates in Al–Mg–Zn alloys after various aging temperatures. Mater. Sci. Appl. 2, 427–434 (2011)Google Scholar
  17. 17.
    Guo, T.J.; Hui, C.; Ming, Z.X.; Dan, L.S.; Jun, L.W.; Hui, O.; Ping, L.H.: Influence of quench-induced precipitation on aging behavior of Al–Zn–Mg–Cu alloy. Trans. Nonferrous Metals Soc. China 22, 1255–1263 (2012)CrossRefGoogle Scholar
  18. 18.
    Berg, L.K.; Gjonnes, J.; Hansen, V.; Li, X.Z.; Wedel, M.K.; Waterloo, G.; Schryvers, D.; Wallenberg, L.R.: GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 49, 3443–3451 (2001)CrossRefGoogle Scholar
  19. 19.
    Dutta, I.; Allen, S.M.: A calorimetric study of precipitation in commercial aluminium alloy 6061. J. Mater. Sci. Lett. 10, 323–326 (1991)CrossRefGoogle Scholar
  20. 20.
    Doan, L.C.; Ohmori, Y.; Nakai, K.: Precipitation and dissolution reactions in a 6061 aluminum alloy. Mater. Trans. Jpn Inst. Metals 41, 300–305 (2000)Google Scholar
  21. 21.
    Gupta, A.K.; Lloyd, D.J.: Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry. Metall. Mater. Trans. A 30, 879–890 (1999)CrossRefGoogle Scholar
  22. 22.
    Miao, W.F.; Laughlin, D.E.: Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022. Metall. Mater. Trans. A 31, 361–371 (2000)CrossRefGoogle Scholar
  23. 23.
    Ohmori, Y.; Doan, L.C.; Nakai, K.: Ageing processes in Al–Mg–Si alloys during continuous heating. Mater. Trans. 43(2), 246–255 (2002)CrossRefGoogle Scholar
  24. 24.
    Jena, A.K.; Gupta, A.K.; Chatuvedi, M.C.: A differential scanning calorimetric investigation of precipitation kinetics in the Al-1.53 wt% Cu-0.79 wt% Mg alloy. Acta Metall. 37(3), 885–895 (1989)CrossRefGoogle Scholar
  25. 25.
    Lorimer, G.W.; Nicholson, R.B.: Further results on the nucleation of precipitates in the Al–Zn–Mg system. Acta Metall. 14(8), 1009–1013 (1966)CrossRefGoogle Scholar
  26. 26.
    Pashley, D.W.; Jacobs, M.H.; Vietz, J.T.: The basic processes affecting two-step ageing in an Al–Mg–Si alloy. Philos. Mag. 16, 51–76 (1967)CrossRefGoogle Scholar
  27. 27.
    Hafley, J.L.: A comparison of the aging kinetics of a cast alumina-6061 aluminum composite and a monolithic 6061 aluminum alloy. PhD diss., Naval Postgraduate School, Monterey, CA (1989)Google Scholar
  28. 28.
    Xigang, F.; Jiang, D.; Meng, Q.; Lai, Z.; Zhang, X.: Characterization of precipitation microstructure and properties of 7150 aluminium alloy. Mater. Sci. Eng. A 427(1–2), 130–135 (2006)Google Scholar
  29. 29.
    Ajay, K.M.; Raja, V.S.: Development of high strength AA 7010 aluminum alloy resistant to environmentally assisted cracking. Corros. Sci. 109, 94–100 (2016)CrossRefGoogle Scholar
  30. 30.
    Xiaorui, D.; Zhihui, L.: Microstructure and properties of an Al–Zn–Mg–Cu alloy pre- stretched plate under various ageing conditions. Rare Metals 27, 652–656 (2008)Google Scholar
  31. 31.
    Nicoleta, R.; Alexis, J.; Lacroix, L.; Petit, J.-A.; Marioara, A.; Rizea, V.; Sanda, V.: Effect of the over-ageing treatment on the mechanical properties of AA2024 aluminum alloy. Revista de chimie (Chem. Mag.) 63, 1042–1045 (2012)Google Scholar
  32. 32.
    Piotr, O.; Walkowicz, M.; Knych, T.; Dymek, S.: Impact of the direct ageing procedure on the age hardening response of Al–Mg–Si 6101 alloy. Materials 11(7), 1239–1251 (2018)CrossRefGoogle Scholar
  33. 33.
    Zhu, Z.; Starink, M.J.: Age hardening and softening in cold-rolled Al–Mg–Mn alloys with up to 0.4wt%Cu. Mater. Sci. Eng. A 489, 138–149 (2008)CrossRefGoogle Scholar
  34. 34.
    Miao, M.F.; Laughlin, D.E.: Precipitation hardening in aluminum alloy 6022. Scr. Mater. 40(7), 873–878 (1999)CrossRefGoogle Scholar
  35. 35.
    Remøe, M.S.; Marthinsen, K.; Westermann, I.; Pedersen, K.; Røyset, J.; Marioara, C.: The effect of alloying elements on the ductility of Al–Mg–Si alloys. Mater. Sci. Eng. A 693, 60–72 (2017)CrossRefGoogle Scholar
  36. 36.
    Mukhopdyay, A.K.: Guinier–Preston zones in a high-purity Al–Zn–Mg alloy. Philos. Mag. Lett. 70(3), 135–140 (1994)CrossRefGoogle Scholar
  37. 37.
    Li, M.-H.; Yang, Y.-Q.; Feng, Z.-Q.; Huang, B.; Luo, X.; Lou, J.-H.; Ru, J.-G.: Precipitation sequence of \(\eta \) phase along low-angle grain boundaries in Al–Zn–Mg–Cu alloy during artificial aging. Trans. Nonferrous Metals Soc. China 24(7), 2061–2066 (2014)CrossRefGoogle Scholar
  38. 38.
    Liu, M.; Klobes, B.; Maier, K.: The age-hardening of an Al–Zn–Mg–Cu alloy: a vacancy perspective. Scr. Mater. 64, 21–24 (2011)CrossRefGoogle Scholar
  39. 39.
    Isadare, A.D.; Aremo, B.; Adeoye, M.O.; Olawale, O.J.; Shittu, M.D.: Effect of heat treatment on some mechanical properties of 7075 aluminium alloy. Mater. Res. 16(1), 190–194 (2013)CrossRefGoogle Scholar
  40. 40.
    Mahadevan, S.; Giridhar, A.; Singh, A.K.: Calorimetric measurements on as-sb-se glasses. J. Non-Cryst. Solids 88(1), 11–34 (1986)CrossRefGoogle Scholar
  41. 41.
    Hadjadj, L.; Amira, R.; Hamana, D.; Mosbah, A.: Phase transformations in Al–Zn–Mg alloy by the differential dilatometry. J. Alloys Compd 462(1–2), 279–283 (2008)CrossRefGoogle Scholar
  42. 42.
    Sukiman, N.L.; Gupta, R.K.; Buchheit, R.G.; Birbilis, N.: Influence of microalloying additions on Al–Mg alloy. Part 1: corrosion and electrochemical response. Corros. Eng. Sci. Technol. 49(4), 254–262 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations