Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 7101–7120 | Cite as

Time-Varying Pole-Radius IIR Multi-Notch Filters with Improved Performance

  • K. P. S. RanaEmail author
  • Vineet Kumar
  • Abhishek Singhal
  • Ankit Chandel
  • Deepanshi Pahuja
  • Abhishek Vashisht
Research Article - Electrical Engineering
  • 23 Downloads

Abstract

In signal processing applications, it is often required to have multi-notch filters (MNFs) which simultaneously possess an excellent quality factor, ‘Q’, and a brief transient response. Though, the duration of transient response can be improved by decreasing ‘Q’ which, however, also degrades the quality of the filter. Due to their contradictory nature, dealing with ‘Q’ and transient response becomes a difficult task. This paper is a sincere attempt to address this problem for MNFs by exploring time-varying pole-radius infinite impulse response MNF designs employing a hyperbolic tangent sigmoid (HTS) function-based pole-radius variation. Two-notch and three-notch filters, based on HTS function, are designed, analyzed for stability and tested for transient suppression, selectivity and noise removal. Experimental validations supported by simulations on sinusoids and ECG signals are performed in the LabVIEW\(^{\mathrm{TM}}\) environment and have been presented as complete performance assessment. In contrast to the recently reported and traditional MNF designs, significant performance enhancements were recorded for the proposed designs. Therefore, based on the presented investigations, it is concluded that the proposed MNFs are efficient designs for removing harmonics from sinusoids and ECG signals.

Keywords

Digital filter IIR filter Multi-notch Transient response Transient suppression ECG Time-varying pole-radius Post-transient performance enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferdjallah, M.; Barr, R.E.: Adaptive digital notch filter design on the unit circle for the removal of powerline noise from biomedical signals. IEEE Trans. Biomed. Eng. 41(6), 529–536 (1994)CrossRefGoogle Scholar
  2. 2.
    Ziarani, A.K.; Konrad, A.: A nonlinear adaptive method of elimination of power line Interference in ECG signals. IEEE Trans. Biomed. Eng. 499(6), 540–547 (2002)CrossRefGoogle Scholar
  3. 3.
    Hamilton, P.S.: A comparison of adaptive and non-adaptive filters for reduction of powerline interference in the ECG. IEEE Trans. Biomed. Eng. 43(1), 105–109 (1996)CrossRefGoogle Scholar
  4. 4.
    Thakor, N.V.; Zhu, Y.S.: Application of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38(8), 785–794 (1991)CrossRefGoogle Scholar
  5. 5.
    Ma, W.K.; Zhang, Y.T.; Yang, F.S.: A fast recursive-least-squares adaptive notch filter and its applications to biomedical signals. Med. Biol. Eng. Comput. 37(1), 99–103 (1999)CrossRefGoogle Scholar
  6. 6.
    Pei, S.C.; Tseng, C.C.: Elimination of AC interference in electrocardiogram using IIR notch filter with transient suppression. IEEE Trans. Biomed. Eng. 42(11), 1128–1132 (1995)CrossRefGoogle Scholar
  7. 7.
    Ţarălungă, D.D.; Ungureanu, G.M.; Hurezeanu, B.; Strungaru, R.; Gussi, I.; Wolf, W.: Abdominal signals processing: power line interference removing by applying notch filters. In: Proceedings of Electrical and Power Engineering (EPE), IEEE International Conference and Exposition, pp. 158–161 (2014)Google Scholar
  8. 8.
    Piskorowski, J.: Powerline interference rejection from sEMG signal using notch filter with transient suppression. In: Proceedings IEEE Instrumentation and Measurement Technology Conference (I2MTC), pp. 1447–1451 (2012)Google Scholar
  9. 9.
    Jou, Y.D.; Lin, Z.P.; Chen, F.K.: Interference elimination of electrocardiogram signals using IIR multiple notch filters. In: IEEE 5\(^{{\rm th}}\) Global Conference on Consumer Elecrtronics, pp. 659–660 (2016)Google Scholar
  10. 10.
    Sohel, M.A.; Naaz, M.; Raheem, M.A.; Munaaf, M.A.: Design of discrete time notch filter for biomedical applications. In: IEEE Devices for Integrated Circuit (DevIC), pp. 487–490 (2017)Google Scholar
  11. 11.
    Verma, A.R.; Singh, Y.: Adaptive tunable notch filter for ECG signal enhancement. Proc. Comput. Sci. 57, 332–337 (2015)CrossRefGoogle Scholar
  12. 12.
    Wagner, D.; Bongers, W.; Kasparek, W.; Leuterer, F.; Monaco, F.; Münich, M.; Schütz, H.; Stober, J.; Thumm, M.; Brand, H. v.d.: A multi-frequency notch filter for millimeter wave plasma diagnostics based on photonic bandgaps in corrugated circular waveguides. In: EDP Sciences EPJ Web of Conferences, p. 87 (2015)Google Scholar
  13. 13.
    Hoogendijk, R.; Heertjes, M.F.; van de Molengraft, M.J.G.; Steinbuch, M.: Directional notch filter for motion control of flexible structures. Mechatronics 24(6), 632–639 (2014)CrossRefGoogle Scholar
  14. 14.
    Teng, W.; Zhang, X.; Zhang, Y.; Yang, L.: Iterative tuning notch filter for suppressing resonance in ultra-precision motion control. Adv. Mech. Eng. 8(11), 1687814016674097 (2016)CrossRefGoogle Scholar
  15. 15.
    Chien, Y.R.: Design of GPS anti-jamming systems using adaptive notch filters. IEEE Syst. J. 9(2), 451–460 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Borio, D.: A multi-state notch filter for GNSS jamming mitigation. In: IEEE International Conference on Localization and GNSS (ICL-GNSS), pp. 1–6 (2014)Google Scholar
  17. 17.
    Mojiri, M.; Karimi-Ghartemani, M.; Bakhshai, A.: Estimation of power system frequency using an adaptive notch filter. IEEE Trans. Instrum. Meas. 56(6), 2470–2477 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tan, L.; Jiang, J.: Novel adaptive IIR notch filter for frequency estimation and tracking. IEEE Signal Process. Mag. 26(6), 186–189 (2009)CrossRefGoogle Scholar
  19. 19.
    Punchalard, R.; Koseeyaporn, J.; Wardkein, P.: Indirect frequency estimation based on second-order adaptive FIR notch filter. Signal Process. 89(7), 1428–1435 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Dai, W.H.; Qiao, C.J.; Wang, Y.K.; Zhou, C.: Adaptive cascaded notch filter for frequency estimation of multiple sinusoids. In: Wireless Communication and Sensor Network Proceedings of the International Conference on Wireless Communication and Sensor Network (WCSN 2015), pp. 138–144 (2016)Google Scholar
  21. 21.
    Mirmohamadsadeghi, L.J.; Vesin, M.: Real time multi signal frequency tracking with a bank of notch filters to estimate the respiratory rate from the ECG. Physiol. Meas. 37(9), 1573 (2016)CrossRefGoogle Scholar
  22. 22.
    Kang, C.H.; Kim, S.Y.; Park, C.G.: A GNSS interference identification using an adaptive cascading IIR notch filter. GPS solut. 18(4), 605–613 (2014)CrossRefGoogle Scholar
  23. 23.
    Choi, J.W.; Cho, N.I.: Suppression of narrow-band interference in DS-spread spectrum systems using adaptive IIR notch filter. Signal Process. 82(12), 2003–2013 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Psychogiou, D.; Mao, R.; Peroulis, D.: Series-cascaded absorptive notch-filters for 4G-LTE radios. In: IEEE Radio and Wireless Symposium (RWS), pp. 177–179 (2015)Google Scholar
  25. 25.
    Cho, Y.H.; Rebeiz, G.M.: Tunable 4-pole dual-notch filters for cognitive radios and carrier aggregation systems. IEEE Trans. Microw. Theory Tech. 63(4), 1308–1314 (2015)CrossRefGoogle Scholar
  26. 26.
    Tan, L.: Digital Signal Processing: Fundamentals and Applications. Elsevier, New York (2008)Google Scholar
  27. 27.
    Dutta Roy, S.C.; Kumar, B.; Jain, S.B.: FIR notch filter design–a review. Facta Univ. Electron. Energ. 14(3), 295–327 (2001)Google Scholar
  28. 28.
    Piskorowski, J.: Digital Q-varying notch IIR filter with transient suppression. IEEE Trans. Instrum. Meas. 59(4), 866–872 (2010)CrossRefGoogle Scholar
  29. 29.
    Tan, L.; Jiang, J.; Wang, L.: Pole-radius-varying IIR notch filter with transient suppression. IEEE Trans. Instrum. Meas. 61(6), 1684–1691 (2012)CrossRefGoogle Scholar
  30. 30.
    Rajagopalan, R.; Dahlstrom, A.: A pole radius varying notch filter with transient suppression for electrocardiogram. World Acad. Sci. Eng. Technol. Int. J. Med. Health Biomed. Bioeng. Pharm. Eng. 8(3), 134–138 (2014)Google Scholar
  31. 31.
    Piskorowski, J.: Suppressing harmonic powerline interference using multiple-notch filtering methods with improved transient behavior. Measurement 45(6), 1350–1361 (2012)CrossRefGoogle Scholar
  32. 32.
    Rana, K.P.S.; Kumar, V.; Gupta, A.: A pole-radius-varying IIR notch filter with enhanced post transient performance. Biomed. Signal Process. Control 33, 379–391 (2017)CrossRefGoogle Scholar
  33. 33.
    Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.Ch.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E.: PhysioBank, PhysioToolkit, PhysioNet: Components of a New Research Resource for Complex PhysiologicSignals. Circulation 101 (23) e215–e220 (2000) (June 13), corresponding MITECG Database, File: 102, http://physionet.org/physiobank/database/mitdb/ (Accessed 26 Nov. 2017)

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Instrumentation and Control Engineering DepartmentNetaji Subhas University of Technology, Sector-3DwarkaIndia

Personalised recommendations