Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 7085–7089 | Cite as

A Tunable Floating Impedance Multiplier

  • Munir A. Al-AbsiEmail author
  • Muhammad T. Abulema’atti
Research Article - Electrical Engineering


This paper presents a novel impedance multiplier that can be used to scale up a passive element 360 times its original value. The proposed design uses commercially available integrated circuits; an operational transconductance amplifier and second-generation current conveyors (\(\hbox {CCII}\,\pm \)), and a single grounded resistor. By introducing a second OTA, the proposed design can produce a temperature insensitive negative and positive impedance scaler. The functionality of the design was confirmed using PSPICE simulation tool.


Impedance multiplier Active filters Integrated circuits Negative capacitance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by King Fahd University of Petroleum and Minerals, Project No. IN161016.


  1. 1.
    Stotts, L.J.: Introduction to implantable biomedical IC design. IEEE Circuits Dev. Mag. 5, 12–18 (1989)CrossRefGoogle Scholar
  2. 2.
    Ahmed, M.T.; Khan, I.A.; Minhaj, N.: Novel electronically tunable C-multipliers. Electron. Lett. 31, 9–11 (1995)CrossRefGoogle Scholar
  3. 3.
    Abuelma’atti, M.T.; Tasadduq, N.: Electronically tunable capacitance multiplier and frequency-dependent negative-resistance using current-controlled current conveyor. Microelectron. J. 30, 869–873 (1999)CrossRefGoogle Scholar
  4. 4.
    Al-Sarawy, S.F.: A novel topology for grounded-to-floating resistor conversion in CMOS technology. Microelectron. J. 33, 1059–1069 (2002)CrossRefGoogle Scholar
  5. 5.
    Siripruchyanan, M.; Jaikla, W.: Floating capacitance multipliers using DVCC and CCCIIs. In: Proceedings of the IEEE International Symposium on Communications and Information Technologies, pp. 218–221 (2007)Google Scholar
  6. 6.
    Kulej, T.: Regulated capacitance multiplier in CMOS technology. In: Proceedings of the 16th International Conference on Mixed Design of Integrated Circuits and Systems, pp. 316–319 (2009)Google Scholar
  7. 7.
    Jaikla, W.; Lahiri, A.; Siripruchyanun, M.: Capacitance multipliers using tunable four terminal floating nullors. In: Proceedings of the International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, pp. 42–45 (2010)Google Scholar
  8. 8.
    Prasad, D.; Bhaskar, D.R.: Grounded and floating inductance simulation circuits using VDTAs. Circuits Syst. 3, 342–347 (2012)CrossRefGoogle Scholar
  9. 9.
    Matsumoto, F.; Fujii, T.; Nishioka, S.; Abe, T.; Ohbuchi, T.: Design of a floating-type impedance scaling circuit for large capacitances. In: Proceedings of the IEEE International Symposium on Intelligent Signal Processing and Communication, pp. 391–396 (2013)Google Scholar
  10. 10.
    Kafe, F.; Psychalinos, C.: Realization of companding filters with large time-constants for biomedical applications. Analog Integr. Circuits Signal Process. 78, 217–231 (2014)CrossRefGoogle Scholar
  11. 11.
    Matsumoto, F.; Nishioka, S.; Ohbuchi, T.; Fujii, T.: Design of a symmetry-type floating impedance scaling circuits for a fully differential filter. Analog Integr. Circuits Signal Process. 85, 253–261 (2015)CrossRefGoogle Scholar
  12. 12.
    Al-Absi, M.A.: A new CMOS tunable floating capacitance multiplier. Int. J. Electron. Lett. 6(1), 48–57 (2018)CrossRefGoogle Scholar
  13. 13.
    Padilla-Cantoya, I.; Rizo-Dominguez, L.; Molinar-Solis, J.: Capacitance multiplier with large multiplication factor, high accuracy and low power and silicon area for floating applications. Electron. Express 15(3), 1–9 (2018)Google Scholar
  14. 14.
    Alpaslan, H.: DVCC-based floating capacitance multiplier design. Turk. J. Electr. Eng. Comput. Soc. 25(2), 1334–1345 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.KFUPMDhahranSaudi Arabia

Personalised recommendations