Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 7047–7065 | Cite as

Modified Model Predictive Control of Back-to-Back T-type NPC Converter Interfacing Wind Turbine-Driven PMSG and Electric Grid

  • Aswani Kumar EedaraEmail author
  • Chandra Sekhar Koritala
  • Srinivasa Rao Rayapudi
Research Article - Electrical Engineering


In this paper, a modified model predictive control (MMPC) scheme is proposed for controlling a back-to-back (BTB) T-type neutral-point-clamped converter (TNPCC). The BTB TNPCC ties a permanent magnet synchronous generator (PMSG) to an electric grid. The PMSG is driven by a variable speed wind turbine. The aim of the proposed method is to mitigate the CMV not only on wind generator-side and but also on grid-side of BTB TNPCC and to reduce the computation effort. Classical MPC (CMPC) algorithms CMPC-I/CMPC-II and MMPC algorithms MMPC-I/MMPC-II are modeled, implemented and compared for two cases: zero CMV on GS/WGS of BTB TNPCC. The simulation results confirm that the MMPC scheme shows similar or slightly improved performance than that of CMPC scheme while accomplishing the following control goals: maximum power point tracking, reactive power control, DC-link voltage control, DC-link capacitors voltage balancing, and CMV mitigation. Moreover, the MMPC strategy shows additional advantages: It reduces a) the computational effort b) the peak CMV on the GS and keeps zero CMV on the WGS, or vice versa. Sensitivity tests are performed to analyze the performance of proposed algorithms in a complex scenario, where both GS and WGS inductance parameters are underestimated/overestimated concurrently. The MMPC strategy has been validated experimentally on an FPGA controller.


Model predictive control (MPC) Back-to-back (BTB) T-type NPC converter Wind energy conversion Permanent magnet synchronous generator (PMSG) Common-mode voltage (CMV) Maximum power point tracking (MPPT) Parameter sensitivity analysis Computational effort 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mamdouh, M.; Abido, M.A.; Hamouz, Z.: Weighting factor selection techniques for predictive torque control of induction motor drives: a comparison study. Arab. J. Sci. Eng. 43(2), 433–445 (2017)CrossRefGoogle Scholar
  2. 2.
    Zhu, Z.; Hu, J.: Electrical machines and power-electronic systems for high-power wind energy generation applications. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 32(1), 34–71 (2012)CrossRefGoogle Scholar
  3. 3.
    Wang, Y.; Yu, M.; Li, Y.: Improved multi-objective model predictive control of permanent magnetic synchronous generator wind power system. J. Renew. Sustain. Energy 7(5), 053–104 (2015)CrossRefGoogle Scholar
  4. 4.
    Lee, S.S.; Heng, Y.E.: Predictive direct power control of multilevel direct current link converter for grid connected battery energy storage systems. J. Renew. Sustain. Energy 8(3), 034–104 (2016)CrossRefGoogle Scholar
  5. 5.
    Lee, S.S.; Heng, Y.E.: Predictive control of power flow between two islanded microgrids using nine-switch converter. J. Renew. Sustain. Energy 8(5), 055–502 (2016)CrossRefGoogle Scholar
  6. 6.
    Sultana, W.R.; Sahoo, S.K.; Sukchai, S.; Yamuna, S.; Venkatesh, D.: A review on state of art development of model predictive control for renewable energy applications. Renew. Sustain. Energy Rev. 76, 391–406 (2017)CrossRefGoogle Scholar
  7. 7.
    Rodriguez, J.; Cortes, P.: Predictive Control of Power Converters and Electrical Drives. Wiley, New York (2012)CrossRefGoogle Scholar
  8. 8.
    Rodriguez, J.; Pontt, J.; Silva, C.A.; Correa, P.; Lezana, P.; Cortes, P.; Ammann, U.: Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54(1), 495–503 (2007)CrossRefGoogle Scholar
  9. 9.
    Gulbudak, O.; Santi, E.: FPGA-based model predictive controller for direct matrix converter. IEEE Trans. Ind. Electron. 63(7), 4560–4570 (2016)CrossRefGoogle Scholar
  10. 10.
    Barros, J.D.; Silva, J.F.A.; Jesus, G.A.: Fast-predictive optimal control of NPC multilevel converters. IEEE Trans. Ind. Electron 60(2), 619–627 (2013)CrossRefGoogle Scholar
  11. 11.
    Xie, W.; Wang, X.; Wang, F.; Xu, W.; Kennel, R.M.; Gerling, D.; Lorenz, R.D.: Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Trans. Ind. Electron. 62(9), 5402–5410 (2015)CrossRefGoogle Scholar
  12. 12.
    Kenny, B.; Lorenz, R.: Stator- and rotor-flux-based deadbeat direct torque control of induction machines. IEEE Trans. Ind. Appl. 39(4), 1093–1101 (2003)CrossRefGoogle Scholar
  13. 13.
    Abdelrahem, M.; Hackl, C.M.; Kennel, R.: Simplified model predictive current control without mechanical sensors for variable-speed wind energy conversion systems. Electr. Eng. 99(1), 367–377 (2016)CrossRefGoogle Scholar
  14. 14.
    Abdelrahem, M.; Hackl, C.; Zhang, Z.; Kennel, R.: Robust predictive control for direct-driven surface-mounted permanent-magnet synchronous generators without mechanical sensors. IEEE Trans. Energy Convers. 99, 1–1 (2017)Google Scholar
  15. 15.
    Zhang, J.Z.; Sun, T.; Wang, F.; Rodriguez, J.; Kennel, R.: A computationally efficient quasi-centralized DMPC for back-to-back converter PMSG wind turbine systems without DC-link tracking errors. IEEE Trans. Ind. Electron. 63(10), 6160–6171 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z.; Hackl, C.M.; Kennel, R.: Computationally efficient DMPC for three-level NPC back-to-back converters in wind turbine systems with PMSG. IEEE Trans. Power Electron. 32(10), 8018–8034 (2017)CrossRefGoogle Scholar
  17. 17.
    Xia, C.; Liu, T.; Shi, T.; Song, Z.: A simplified finite-control-set model-predictive control for power converters. IEEE Trans. Ind. Informat. 10(2), 991–1002 (2014)CrossRefGoogle Scholar
  18. 18.
    Yaramasu, V.; Wu, B.; Rivera, M.; Narimani, M.; Kouro, S.; Rodriguez, J.: Generalised approach for predictive control with common-mode voltage mitigation in multilevel diode-clamped converters. IET Power Electron. 8, 1440–1450 (2015)CrossRefGoogle Scholar
  19. 19.
    Bharatiraja, C.; Munda, J.L.; Bayindir, R.; Tariq, M.: A common-mode leakage current mitigation for PV-grid connected three-phase three-level transformerless T-type-NPC-MLI. In: 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pp. 578–583 (2016)Google Scholar
  20. 20.
    Guo, L.; Zhang, X.; Yang, S.; Xie, Z.; Cao, R.: A model predictive control-based common-mode voltage suppression strategy for voltage-source inverter. IEEE Trans. Ind. Electron. 63(10), 6115–6125 (2016)CrossRefGoogle Scholar
  21. 21.
    Hoseini, S.K.; Sheikholeslami, A.; Adabi, J.: Predictive modulation schemes to reduce common-mode voltage in three-phase inverters-fed AC drive systems. IET Power Electron. 7(4), 840–849 (2014)CrossRefGoogle Scholar
  22. 22.
    Kwak, S.k; Mun, S.: Model predictive control methods to reduce common-mode voltage for three-phase voltage source inverters. IEEE Trans. Power Electron. 30, 5019–5035 (2015)CrossRefGoogle Scholar
  23. 23.
    ki Mun, S.; Kwak, S.: Reducing common-mode voltage of three-phase VSIs using the predictive current control method based on reference voltage. J. Power Electron. 15(3), 712–720 (2015)CrossRefGoogle Scholar
  24. 24.
    Rivera, M.: Predictive current control for a VSI with reduced common mode voltage operating at fixed switching frequency. In: 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE). IEEE (2015)Google Scholar
  25. 25.
    Uddin, M.; Mirzaeva, G.; Goodwin, G.; Stepien, P.: A simplified model predictive control to eliminate common mode voltage of an AC motor fed by a neutral point clamped inverter. In: 2017 20th International Conference on Electrical Machines and Systems (ICEMS). IEEE (2017)Google Scholar
  26. 26.
    Xing, X.; Chen, A.; Zhang, Z.; Chen, J.; Zhang, C.: Model predictive control method to reduce common-mode voltage and balance the neutral-point voltage in three-level T-type inverter. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE (2016)Google Scholar
  27. 27.
    Aswani Kumar, E.; Chandra Sekhar, K.; Srinivasa Rao, R.: Model predictive current control of a three-phase T-Type NPC inverter to reduce common mode voltage. J. Circuits Syst. Comput. 27(2), 1850028 (2018)CrossRefGoogle Scholar
  28. 28.
    Lin, Z.; Huang, S.; Wan, S.: A novel control scheme for T-Type three-level SSG converters using adaptive PR controller with a variable frequency resonant PLL. J. Power Electron. 16(3), 1176–1189 (2016)CrossRefGoogle Scholar
  29. 29.
    Yuan, X.: A four-level \(\pi \)-type converter for low-voltage applications. In: 2015 17th European Conference on Power Electronics and Applications (EPE15 ECCE-Europe). IEEE (2015)Google Scholar
  30. 30.
    Yaramasu, V.; Wu, B.: Control of PMSG WECS with Back-to-Back Connected Converters, Chap. 9, pp. 285–328. Wiley, New York (2017)Google Scholar
  31. 31.
    Krause, P.; Wasynczuk, O.; Sudhoff, S.; Pekarek, S. (eds.): Analysis of Electric Machinery and Drive Systems. Wiley, New York (2013)Google Scholar
  32. 32.
    Golub, G.H.; Ortega, J.M.: Scientific Computing and Differential Equations: An Introduction to Numerical Methods. Academic Press, Edinburgh (2014)zbMATHGoogle Scholar
  33. 33.
    Yaramasu, V.; Wu, B.: Fundamentals of Model Predictive Control. Chap. 4, pp. 117–148. Wiley, New York (2016)Google Scholar
  34. 34.
    Dirscherl, C.; Hackl, C.; Schechner, K.: Modellierung und Regelung von modernen Windkraftanlagen: Eine Einführung, pp. 1540–1614. Springer, Berlin (2015)Google Scholar
  35. 35.
    Abdelrahem, M.; Hackl, C.; Kennel, R.: Model predictive control of permanent magnet synchronous generators in variable-speed wind turbine systems. In: Proceedings of Power and Energy Student Summit (PESS 2016) (2016)Google Scholar
  36. 36.
    Calle-Prado, A.; Alepuz, S.; Bordonau, J.; Cortes, P.; Rodriguez, J.: Predictive control of a back-to-back NPC converter-based wind power system. IEEE Trans. Ind. Electron. 63(7), 4615–4627 (2016)CrossRefGoogle Scholar
  37. 37.
    Wu, B.; Narimani, M.: High-Power Converters and AC Drives. Wiley, New York (2017)CrossRefGoogle Scholar
  38. 38.
    Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Informat. 9(2), 1003–1016 (2013)CrossRefGoogle Scholar
  39. 39.
    Cortes, P.; Kouro, S.; Rocca, B.L.; Vargas, R.; Rodriguez, J.; Leon, J.I.; Vazquez, S.; Franquelo, L.G.: Guidelines for weighting factors design in model predictive control of power converters and drives. In: 2009 IEEE International Conference on Industrial Technology, pp. 1–7 (2009)Google Scholar
  40. 40.
    Yaramasu, V.; Wu, B.: Overview of Digital Control Techniques, Chap. 3, pp. 91–116. Wiley, New York (2016)Google Scholar
  41. 41.
    Sanchez, P.M.; Machado, O.; Peña, E.J.B.; Rodríguez, F.J.; Meca, F.J.: FPGA-based implementation of a predictive current controller for power converters. IEEE Trans. Ind. Informat. 9(3), 1312–1321 (2013)CrossRefGoogle Scholar
  42. 42.
    Yaramasu, V.; Wu, B.; Rivera, M.; Rodriguez, J.: A new power conversion system for Megawatt PMSG wind turbines using four-level converters and a simple control scheme based on two-step model predictive strategy—part I: modeling and theoretical analysis. IEEE Trans. Emerg. Sel. Topics Power Electron. 2(1), 3–13 (2014)CrossRefGoogle Scholar
  43. 43.
    Zhang, Z.; Wang, F.; Sun, T.; Rodríguez, J.; Kennel, R.: FPGA-based experimental investigation of a quasi-centralized model predictive control for back-to-back converters. IEEE Trans. Power Electron. 31(1), 662–674 (2016)CrossRefGoogle Scholar
  44. 44.
    Monmasson, E.; Cirstea, M.N.: FPGA design methodology for industrial control systems—a review. IEEE Trans. Ind. Electron. 54(4), 1824–1842 (2007)CrossRefGoogle Scholar
  45. 45.
    Zhang, Z.; Cai, X.; Kennel, R.; Wang, F.: Fully FPGA based predictive control of back-to-back power converter PMSG wind turbine systems with space vector modulator. In: 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), pp. 1468–1473 (2016)Google Scholar
  46. 46.
    Naouar, M.W.; Naassani, A.A.; Monmasson, E.; Slama-Belkhodja, I.: FPGA-based predictive current controller for synchronous machine speed drive. IEEE Trans. Power Electron. 23(4), 2115–2126 (2008)CrossRefGoogle Scholar
  47. 47.
    Sepúlveda, C.A.; Muñoz, J.A.; Espinoza, J.R.; Figueroa, M.E.; Baier, C.R.: FPGA v/s DSP performance comparison for a VSC-based STATCOM control application. IEEE Trans. Ind. Informat. 9(3), 1351–1360 (2013)CrossRefGoogle Scholar
  48. 48.
    Wu, B.; Lang, Y.; Zargari, N.; Kouro, S.: Power Conversion and Control of Wind Energy Systems. Wiley, New York (2011)CrossRefGoogle Scholar
  49. 49.
    Zhang, Z.; Wang, F.; Wang, J.; Rodríguez, J.; Kennel, R.: Nonlinear direct control for three-level NPC back-to-back converter PMSG wind turbine systems: experimental assessment with FPGA. IEEE Trans. Ind. Informat. 13(3), 1172–1183 (2017)CrossRefGoogle Scholar
  50. 50.
    Motahhir, S.; Ghzizal, A.E.; Sebti, S.: MIL and SIL and PIL tests for MPPT algorithm. Cogent Eng. 4(1), 1378475 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringJawaharlal Nehru Technological University KakinadaKakinadaIndia
  2. 2.Department of Electrical and Electronics EngineeringR.V.R. and J.C. College of EngineeringGunturIndia
  3. 3.Department of Electrical and Electronics EngineeringSasi Institute of Technology and EngineeringTadepalligudemIndia

Personalised recommendations