Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 7023–7031 | Cite as

Palmprint Recognition Using Oriented Structural Energy Signature Codes

  • Pawan DubeyEmail author
  • Tirupathiraju Kanumuri
Research Article - Electrical Engineering
  • 56 Downloads

Abstract

The palmlines in palmprint are dispersed in different directions and the intersections of these diverged palmlines configure the textural structures. Consequently, these structures have energy in the different orientations called as “ energy signatures” which are utilized to extract a new palmprint representation named as “oriented structural energy signature codes”. In the proposed work, aforementioned energy signatures in different orientations are extracted using oriented exponential wavelets. Thereafter, bidirectionally rotated oriented energy signatures are acquired and employed to generate the oriented structural energy signature codes. The effectiveness of the proposed scheme is examined by performing the experiments on benchmark databases such as PolyU 2D, PolyU multispectral, IITD touchless, and PolyU vers. II.

Keywords

Biometrics Palmprint recognition Oriented exponential wavelets Oriented structural energy signatures OSES codes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K.; Ross, A.A.; Nandakumar, K.: Introduction to Biometrics. Springer, Berlin (2011)CrossRefGoogle Scholar
  2. 2.
    Kong, A.; Zhang, D.; Kamel, M.: A survey of palmprint recognition. Pattern Recognit. 42(7), 1408–1418 (2009)CrossRefGoogle Scholar
  3. 3.
    Kong, W.K.; Zhang, D.; Li, W.: Palmprint feature extraction using 2-d gabor filters. Pattern Recognit. 36(10), 2339–2347 (2003)CrossRefGoogle Scholar
  4. 4.
    Zhang, D.; Kong, W.K.; You, J.; Wong, M.: Online palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1041–1050 (2003)CrossRefGoogle Scholar
  5. 5.
    Kong, A.W.K.; Zhang, D.: Feature-level fusion for effective palmprint authentication. Biom. Authent. Proc. 3072, 761–767 (2004)CrossRefGoogle Scholar
  6. 6.
    Kong, A.K.; Zhang, D.: Competitive coding scheme for palmprint verification. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), vol. 1, pp. 4–7 (2004)Google Scholar
  7. 7.
    Jia, W.; Huang, D.S.; Zhang, D.: Palmprint verification based on robust line orientation code. Pattern Recognit. 41(5), 1504–1513 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Guo, Z.; Zhang, D.; Zhang, L.; Zuo, W.: Palmprint verification using binary orientation co-occurrence vector. Pattern Recognit. Lett. 30(13), 1219–1227 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, L.; Li, H.; Niu, J.: Fragile bits in palmprint recognition. IEEE Signal Process. Lett. 19(10), 663–666 (2012)CrossRefGoogle Scholar
  10. 10.
    Tamrakar, D.; Khanna, P.: Palmprint verification with XOR-SUM Code. Signal Image Video Process. 9(3), 535–542 (2015)CrossRefGoogle Scholar
  11. 11.
    Fei, L.; Xu, Y.; Tang, W.; Zhang, D.: Double-orientation code and nonlinear matching scheme for palmprint recognition. Pattern Recognit. 49, 89–101 (2016)CrossRefGoogle Scholar
  12. 12.
    Fei, L.; Xu, Y.; Zhang, D.: Half-orientation extraction of palmprint features. Pattern Recognit. Lett. 69, 35–41 (2016)CrossRefGoogle Scholar
  13. 13.
    Xu, Y.; Fei, L.; Wen, J.; Zhang, D.: Discriminative and robust competitive code for palmprint recognition. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–10 (2016)Google Scholar
  14. 14.
    Fei, L.; Zhang, B.; Xu, Y.; Yan, L.: Palmprint recognition using neighboring direction indicator. IEEE Trans. Hum. Mach. Syst. 46(6), 787–798 (2016)CrossRefGoogle Scholar
  15. 15.
    Mallat, S.; Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Charalampidis, D.; Kasparis, T.: Wavelet-based rotational invariant roughness features for texture classification and segmentation. IEEE Trans. Image Process. 11(8), 825–837 (2002)CrossRefGoogle Scholar
  17. 17.
    Zhang, J.; Liang, J.; Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hong Kong PolyU 2D/3D Database (2016). http://www.comp.polyu.edu.hkbiometrics/2D3DPalmprint/2D3DPalmprint.htm. Accessed 19 Oct 2016
  19. 19.
    Polyu multispectral palmprint database (2016). http://www.comp.polyu.edu.hk/~biometrics. Accessed 19 Oct 2016
  20. 20.
    Iitd touchless palmprint database version (1.0) (2016). http://www.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm. Accessed 2 Dec 2016
  21. 21.
    Hong Kong PolyU version II Database (2014). “http://www.comp.polyu.edu.hk/~biometrics/”. Accessed 10 Feb 2014
  22. 22.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)CrossRefGoogle Scholar
  23. 23.
    Basu, M.: Gaussian-based edge-detection methods-a survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 32(3), 252–260 (2002)CrossRefGoogle Scholar
  24. 24.
    Wu, X.; Zhang, D.; Wang, K.: Palm line extraction and matching for personal authentication. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 36(5), 978–987 (2006)CrossRefGoogle Scholar
  25. 25.
    Sun, Z.; Tan, T.; Wang, Y.; Li, S.Z.: Ordinal palmprint represention for personal identification [represention read representation]. In: Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 279–284. IEEE (2005)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.National Institute of Technology DelhiNarelaIndia

Personalised recommendations