Advertisement

A Lightweight Authentication Scheme for Multi-gateway Wireless Sensor Networks Under IoT Conception

  • Lili Xu
  • Fan WuEmail author
Research Article - Computer Engineering and Computer Science

Abstract

Internet of Things (IoT) is known as a hot topic in current decade. As a widely accepted IoT technology, wireless sensor network (WSN) is employed in fire alarming, agriculture, etc. However, how to devise a secure authentication scheme for WSNs is an open issue. In recent several years, authentication schemes about WSN with multi-gateway architecture have turned up. Unfortunately, security weaknesses may happen in historical schemes. Rather than simply improve the old schemes, we present a lightweight authentication scheme for multi-gateway WSNs in this paper. Based on the place of aim sensor, the process is divided into two cases: visiting sensor in and out of the scope of gateway. After the proof with ProVerif and analysis of the security properties, we deem that our scheme is away from usual attacks. Furthermore, the presented scheme is better than other recent schemes by performance comparison and it is practical by simulation study via the famous tool NS-3.

Keywords

Tracking attack Multi-gateway ProVerif simulation Wireless sensor network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xue, K.; Ma, C.; Hong, P.; Ding, R.: A temporal-credential-based mutual authentication and key agreement scheme for wireless sensor networks. J. Netw. Comput. Appl. 36(1), 316–323 (2013)Google Scholar
  2. 2.
    Turkanović, M.; Brumen, B.; Hölbl, M.: A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion. Ad Hoc Netw. 20, 96–112 (2014)Google Scholar
  3. 3.
    Farash, M.S.; Turkanović, M.; Kumari, S.; Hölbl, M.: An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment. Ad Hoc Netw. 36, 152–176 (2016)Google Scholar
  4. 4.
    Amin, R.; Biswas, G.: A secure light weight scheme for user authentication and key agreement in multi-gateway based wireless sensor networks. Ad Hoc Netw. 36, 58–80 (2016)Google Scholar
  5. 5.
    Amin, R.; Islam, S.H.; Biswas, G.; Khan, M.K.; Leng, L.; Kumar, N.: Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks. Comput. Netw. 101, 42–62 (2016)Google Scholar
  6. 6.
    Li, X.; Peng, J.; Niu, J.; Wu, F.; Liao, J.; Choo, K.K.R.: A robust and energy efficient authentication protocol for industrial Internet of Things. IEEE Internet Things J. 5(3), 1606–1615 (2018)Google Scholar
  7. 7.
    Wu, F.; Xu, L.; Kumari, S.; Li, X.: A privacy-preserving and provable user authentication scheme for wireless sensor networks based on Internet of Things security. J. Ambient Intell. Humaniz. Comput. 8(1), 101–116 (2017)Google Scholar
  8. 8.
    Amin, R.; Sherratt, R.S.; Giri, D.; Islam, S.; Khan, M.K.: A software agent enabled biometric security algorithm for secure file access in consumer storage devices. IEEE Trans. Consum. Electron. 63(1), 53–61 (2017)Google Scholar
  9. 9.
    Li, X.; Ibrahim, M.H.; Kumari, S.; Sangaiah, A.K.; Gupta, V.; Choo, K.K.R.: Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks. Comput. Netw. 129, 429–443 (2017)Google Scholar
  10. 10.
    Li, X.; Niu, J.; Bhuiyan, M.Z.A.; Wu, F.; Karuppiah, M.; Kumari, S.: A robust ECC-based provable secure authentication protocol with privacy preserving for industrial Internet of Things. IEEE Trans. Ind. Inform. 14(8), 3599–3609 (2018)Google Scholar
  11. 11.
    Amin, R.; Islam, S.H.; Kumar, N.; Choo, K.K.R.: An untraceable and anonymous password authentication protocol for heterogeneous wireless sensor networks. J. Netw. Comput. Appl. 104, 133–144 (2018)Google Scholar
  12. 12.
    Wu, F.; Xu, L.: An improved and provable self-certified digital signature scheme with message recovery. Int. J. Commun. Syst. 28(2), 344–357 (2015)Google Scholar
  13. 13.
    Sun, G.; Chang, V.; Ramachandran, M.; Sun, Z.; Li, G.; Yu, H.; Liao, D.: Efficient location privacy algorithm for Internet of Things (IoT) services and applications. J. Netw. Comput. Appl. 89, 3–13 (2017)Google Scholar
  14. 14.
    Wu, F.; Xu, L.; Kumari, S.; Li, X.: A new and secure authentication scheme for wireless sensor networks with formal proof. Peer-to-Peer Netw. Appl. 10(1), 16–30 (2017)Google Scholar
  15. 15.
    Karati, A.; Amin, R.; Islam, S.H.; Choo, K.K.R.: Provably secure and lightweight identity-based authenticated data sharing protocol for cyber-physical cloud environment. IEEE Trans. Cloud Comput. (2018).  https://doi.org/10.1109/TCC.2018.2834405 Google Scholar
  16. 16.
    Amin, R.; Islam, S.H.; Biswas, G.; Obaidat, M.S.: A robust mutual authentication protocol for WSN with multiple base-stations. Ad Hoc Networks. 75, 1–18 (2018)Google Scholar
  17. 17.
    Jiang, Q.; Ma, J.; Lu, X.; Tian, Y.: An efficient two-factor user authentication scheme with unlinkability for wireless sensor networks. Peer-to-Peer Netw. Appl. 8(6), 1070–1081 (2015)Google Scholar
  18. 18.
    Srinivas, J.; Mukhopadhyay, S.; Mishra, D.: Secure and efficient user authentication scheme for multi-gateway wireless sensor networks. Ad Hoc Netw. 54, 147–169 (2017)Google Scholar
  19. 19.
    Wu, F.; Xu, L.; Kumari, S.; Li, X.: A novel and provably secure biometrics-based three-factor remote authentication scheme for mobile client–server networks. Comput. Electr. Eng. 45, 274–285 (2015)Google Scholar
  20. 20.
    Watro, R.; Kong, D.; Cuti, Sf.; Gardiner, C.; Lynn, C.; Kruus, P.: TinyPK: securing sensor networks with public key technology. In: Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, pp. 59–64. ACM (2004)Google Scholar
  21. 21.
    Das, M.L.: Two-factor user authentication in wireless sensor networks. IEEE Trans. Wirel. Commun. 8(3), 1086–1090 (2009)Google Scholar
  22. 22.
    Khan, M.K.; Alghathbar, K.: Cryptanalysis and security improvements of “two-factor user authentication in wireless sensor networks”. Sensors 10(3), 2450–2459 (2010)Google Scholar
  23. 23.
    He, D.; Gao, Y.; Chan, S.; Chen, C.; Bu, J.: An enhanced two-factor user authentication scheme in wireless sensor networks. Ad Hoc Sens. Wirel. Netw. 10(4), 361–371 (2010)Google Scholar
  24. 24.
    Yoo, S.G.; Park, K.Y.; Kim, J.: A security-performance-balanced user authentication scheme for wireless sensor networks. Int. J. Distrib. Sens. Netw. 8, 382810 (2012)Google Scholar
  25. 25.
    Kumar, P.; Lee, H.J.: Cryptanalysis on two user authentication protocols using smart card for wireless sensor networks. In: Wireless Advanced (WiAd), 2011, pp. 241–245. IEEE (2011)Google Scholar
  26. 26.
    Wu, F.; Xu, L.; Kumari, S.; Li, X.; Shen, J.; Choo, K.K.R.; Wazid, M.; Das, A.K.: An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment. J. Netw. Comput. Appl. 89, 72–85 (2017)Google Scholar
  27. 27.
    Das, A.K.; Sutrala, A.K.; Kumari, S.; Odelu, V.; Wazid, M.; Li, X.: An efficient multi-gateway-based three-factor user authentication and key agreement scheme in hierarchical wireless sensor networks. Secur. Commun. Netw. (2016).  https://doi.org/10.1002/sec.1464 Google Scholar
  28. 28.
    Wang, D.; Wang, P.: Understanding security failures of two-factor authentication schemes for real-time applications in hierarchical wireless sensor networks. Ad Hoc Netw. 20, 1–15 (2014)Google Scholar
  29. 29.
    Fan, C.I.; Lin, Y.H.: Provably secure remote truly three-factor authentication scheme with privacy protection on biometrics. IEEE Trans. Inf. Forensics Secur. 4(4), 933–945 (2009)Google Scholar
  30. 30.
    Wu, F.; Xu, L.; Kumari, S.; Li, X.: An improved and provably secure three-factor user authentication scheme for wireless sensor networks. Peer-to-Peer Netw. Appl. 11(1), 1–20 (2018)Google Scholar
  31. 31.
    Kocher, P.; Jaffe, J.; Jun, B.: Differential power analysis. In: Advances in Cryptology-CRYPTO’99, pp. 388–397. Springer (1999)Google Scholar
  32. 32.
    Mangard, S.; Oswald, E.; Standaert, F.X.: One for all-call for one: unifying standard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)Google Scholar
  33. 33.
    Wu, F.; Xu, L.; Kumari, S.; Li, X.; Das, A.K.; Khan, M.K.; Karuppiah, M.; Baliyan, R.: A novel and provably secure authentication and key agreement scheme with user anonymity for global mobility networks. Secur. Commun. Netw. 9, 3527–3542 (2016)Google Scholar
  34. 34.
    Das, A.K.: A secure and robust temporal credential-based three-factor user authentication scheme for wireless sensor networks. Peer-to-Peer Netw. Appl. 9, 223–244 (2016)Google Scholar
  35. 35.
    Xu, L.; Wu, F.: Cryptanalysis and improvement of a user authentication scheme preserving uniqueness and anonymity for connected health care. J. Med. Syst. 39(2), 1–9 (2015)Google Scholar
  36. 36.
    Banerjee, U.; Juvekar, C.; Fuller, S.H.; Chandrakasan, A.P.: eeDTLS: Energy-efficient datagram transport layer security for the Internet of Things. In: 2017 IEEE Global Communications Conference, GLOBECOM 2017, pp. 1–6. IEEE (2017)Google Scholar
  37. 37.
    nsnamorg: Ns-3.26 (2017). https://www.nsnam.org/ns-3-26/. Accessed 8 Jul 2018
  38. 38.
    Seok, Y.: IEEE 802.11ah (Wi-Fi in 900 MHz license-exempt band) for IOT application (2017). http://www.standardsuniversity.org/e-magazine/august-2016-volume-6/ieee-802-11ah-wi-fi-900-mhz-license-exempt-band-iot-application/. Accessed 8 Jul 2018
  39. 39.
    Tian, L.; Deronne, S.; Latré, S.; Famaey, J.: Implementation and validation of an IEEE 802.11ah module for NS-3. In: Proceedings of the Workshop on NS-3, pp. 49–56. ACM (2016)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.School of Information Science and TechnologyXiamen UniversityXiamenChina
  2. 2.Department of Computer Science and EngineeringXiamen Institute of TechnologyXiamenChina

Personalised recommendations