Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6987–7001 | Cite as

One-Cycle Controlled Bridgeless SEPIC with Coupled Inductors for PAM Control-Based BLDC Drive

  • Pavana PrabhuEmail author
  • Vinatha Urundady
Research Article - Electrical Engineering


This paper presents a novel approach for the speed control of BLDC motor for residential air conditioning application, using pulse amplitude modulation (PAM) control of voltage source inverter (VSI). PAM control of VSI is accomplished by using a bridgeless SEPIC converter embedded with coupled inductors at the front end and adopting one-cycle control (OCC) technique in the inner voltage control loop. The DC reference voltage required for inner voltage control loop is obtained using a PI controller in the outer speed control loop and speed feedback signal. The PAM control (DC supply voltage control) of VSI reduces switching losses by allowing the operation of VSI at fundamental frequency. Bridgeless SEPIC with coupled inductors is designed to enable PAM control for VSI and is operated in discontinuous conduction mode (DCM) for the complete range of DC link voltage. DCM operation simplifies power factor correction control scheme to a simple voltage follower approach, since it has inherent input current shaping feature. The introduction of coupled inductors in the bridgeless SEPIC converter lowers the overall count of components, allows better integration and lowers the requirement of inductance, compared to conventional bridgeless SEPIC. OCC which is a nonlinear control technique, used in the voltage control loop, enhances the performance with improved startup and transient state response. It also improves the quality of supply current drawn by reducing the distortion compared to PI control technique. The proposed BLDC motor drive is modelled and simulated using MATLAB/Simulink. The performance of proposed system is evaluated for a wide range of speed control. The experimental prototype for bridgeless SEPIC with coupled inductors is implemented. The inherent power factor correction for supply voltage variations is validated using the results. The bridgeless operation of the converter with coupled inductor configuration is also described with experimental waveforms at rated supply voltage of 220 V.


Pulse Amplitude Modulation Bridgeless SEPIC Coupled inductors DCM One-Cycle Control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ching, T.W.: An investigation on electrical performance of variable-frequency drives for air-conditioning applications. In: Electric Power Conference, 2008. EPEC 2008. IEEE Canada, pp. 1–7. IEEE (2008)Google Scholar
  2. 2.
    Michael, P.A.; Hariharan, V.; Sharon, G., et al.: Modelling, simulation & comparison of bldc motor and induction motor based condenser in a chiller cooler system using cfd. In: Intelligent Systems and Control (ISCO), 2017 11th International Conference on, pp. 197–202. IEEE (2017)Google Scholar
  3. 3.
    Xia, Cl: Permanent Magnet Brushless DC Motor Drives and Controls. Wiley, New Jersey (2012)CrossRefGoogle Scholar
  4. 4.
    Singh, B.: Power quality improvements in permanent magnet brushless dc motor drives for home appliances. In: Industrial and Information Systems (ICIIS), 2014 9th International Conference on, pp. 1–1. IEEE (2014)Google Scholar
  5. 5.
    Singh, B.; Singh, B.N.; Chandra, A.; Al-Haddad, K.; Pandey, A.; Kothari, D.P.: A review of single-phase improved power quality ac-dc converters. IEEE Trans. Ind. Electron. 50(5), 962–981 (2003)CrossRefGoogle Scholar
  6. 6.
    Mohan, A.; Padayattil, M. M.: Bridgeless Ćuk converter fed BLDC motor drive for inverter air conditioning applications. In: Computation of Power, Energy Information and Commuincation (ICCPEIC), 2016 International Conference on (pp. 369–375). IEEE (2016)Google Scholar
  7. 7.
    Bist, V.; Singh, B.: An adjustable-speed PFC bridgeless buck–boost converter-fed BLDC motor drive. IEEE Trans. Ind. Electron. 61(6), 2665–2677 (2014)CrossRefGoogle Scholar
  8. 8.
    Gopalarathnam, T.; Toliyat, H. A.: Input current shaping in BLDC motor drives using a new converter topology. In: Industrial Electronics Society, 2001. IECON’01. The 27th Annual Conference of the IEEE (Vol. 2, pp. 1441–1444). IEEE (2001)Google Scholar
  9. 9.
    Singh, B.; Bist, V.: A PFC based BLDC motor drive using a Bridgeless Zeta converter. In: Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE (pp. 2553–2558). IEEE. (2013)Google Scholar
  10. 10.
    Singh, B.; Singh, S.; Chandra, A.; Al-Haddad, K.: Comprehensive study of single-phase ac–dc power factor corrected converters with high-frequency isolation. IEEE Trans. Ind. Inform. 7(4), 540–556 (2011)CrossRefGoogle Scholar
  11. 11.
    Garca, O.; Cobos, J.A.; Prieto, R.; Alou, P.; Uceda, J.: Single phase power factor correction: a survey. IEEE Trans. Power Electron. 18(3), 749–755 (2003)CrossRefGoogle Scholar
  12. 12.
    Jovanovic, M.M.; Jang, Y.: State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications-an overview. IEEE Trans. Ind. Electron. 52(3), 701–708 (2005)CrossRefGoogle Scholar
  13. 13.
    Bist, V.; Singh, B.; Chandra, A.; Al-Haddad, K.: An adjustable speed PFC bridgeless-SEPIC fed brushless DC motor drive. In: Energy Conversion Congress and Exposition (ECCE), 2015 IEEE (pp. 4886–4893). IEEE. (2015)Google Scholar
  14. 14.
    Ismail, E.H.: Bridgeless sepic rectier with unity power factor and reduced conduction losses. IEEE Trans. Ind. Electron. 56(4), 1147–1157 (2009)CrossRefGoogle Scholar
  15. 15.
    Mahdavi, M.; Farzanehfard, H.: Bridgeless sepic pfc rectier with reduced components and conduction losses. IEEE Trans. Ind. Electron. 58(9), 4153–4160 (2011)CrossRefGoogle Scholar
  16. 16.
    Mahdavi, M.; Farzanehfard, H.: New bridgeless pfc converter with reduced components. In: Electronic Devices, Systems and Applications (ICEDSA), 2011 International Conference on, pp. 125–130. IEEE (2011)Google Scholar
  17. 17.
    Sahid, M. R.; Yatim, A. H. M.; Taufik, T.: A new AC-DC converter using bridgeless SEPIC. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society (pp. 286–290). IEEE. (2010)Google Scholar
  18. 18.
    Singh, B.; Bist, V.: Power-quality improvement in PFC bridgeless SEPIC-fed BLDC motor drive. Int. J. Emerg. Electr. Power Syst. 14(3), 285–296 (2013)Google Scholar
  19. 19.
    Vinatha, U.: Speed control of BLDC motor using bridgeless SEPIC PFC with coupled inductors. In: Industrial and Information Systems (ICIIS), 2016 11th International Conference on (pp. 798–803). IEEE. (2016)Google Scholar
  20. 20.
    Lin, C. C.; Tzou, Y. Y.: Green mode control strategy of a PMSM with front-end SEPIC PFC converter. In: Energy Conversion Congress and Exposition (ECCE), 2014 IEEE (pp. 1476–1481). IEEE. (2014)Google Scholar
  21. 21.
    Singh, S.; Singh, B.: Voltage controlled PFC Zeta converter based PMBLDCM drive for an air-conditioner. In: Industrial and Information Systems (ICIIS), 2010 International Conference on (pp. 550–555). IEEE. (2010)Google Scholar
  22. 22.
    Ho, K. S.; Wu, K. C.; Tzou, Y. Y.: Digital control of a bridgeless SEPIC PFC AC-DC converter with variable voltage output. In: Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE (pp. 002342–002347). IEEE. (2015)Google Scholar
  23. 23.
    Kim, K.H.; Youn, M.J.: Performance comparison of PWM inverter and variable DC link inverter schemes for high-speed sensorless control of BLDC motor. Electron. Lett. 38(21), 1294–1295 (2002)CrossRefGoogle Scholar
  24. 24.
    Raviraj, V.S.C.; Sen, P.C.: Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters. IEEE Trans. Ind. Appl. 33(2), 518–524 (1997)CrossRefGoogle Scholar
  25. 25.
    Kaboli, S. H. A.; Mansouri, M.; Selvaraj, J.; Rahim, N. B. A.: A hybrid adaptive Neural-Fuzzy tuned PI controller based Unidirectional Boost PFC converter feeds BLDC drive. In Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2013 4th (pp. 176–181). IEEE. (2013)Google Scholar
  26. 26.
    Gupta, G.; Gaur, P.: Fuzzy logic controlled-power factor corrected bridgeless buck boost converter-fed brushless DC motor drive. In: Computer, Communication and Control (IC4), 2015 International Conference on (pp. 1–6). IEEE. (2015)Google Scholar
  27. 27.
    Kavitha, M.; Sivachidambaranathan, V.: Power factor correction in fuzzy based brushless DC motor fed by bridgeless buck boost converter. In: Computation of Power, Energy Information and Commuincation (ICCPEIC), 2017 International Conference on (pp. 549–553). IEEE. (2017)Google Scholar
  28. 28.
    Sabir, A.; Kassas, M.: A novel and simple hybrid Fuzzy/PI controller for brushless DC motor drives. Automatika 56(4), 424–435 (2015)CrossRefGoogle Scholar
  29. 29.
    Smedley, K.M.; Cuk, S.: One-cycle control of switching converters. IEEE Trans. Power Electron. 10(6), 625–633 (1995)CrossRefGoogle Scholar
  30. 30.
    Bektaş, E.; Karaarslan, A.: The comparison of PI control method and one cycle control method for SEPIC converter. In: Electrical and Electronics Engineering (ELECO), 2017 10th International Conference on (pp. 345–349). IEEE. (2017)Google Scholar
  31. 31.
    Lai, Z.; Smedley, K.M.: A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator. IEEE Trans. Power Electron. 13(3), 501–510 (1998)CrossRefGoogle Scholar
  32. 32.
    Lai, Z.; Smedley, K.M.; Ma, Y.: Time quantity one-cycle control for power-factor correctors. IEEE Trans. Power Electron. 12(2), 369–375 (1997a)CrossRefGoogle Scholar
  33. 33.
    Lu, B.; Brown, R.; Soldano, M.: Bridgeless pfc implementation using one cycle control technique. Proceedings IEEE Applied Power Electronics Conference 812–817 (2005)Google Scholar
  34. 34.
    Jayachandran, S.; Vinatha, U.: One cycle controlled bridge-less SEPIC converter fed BLDC motor drive. In: Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2017 IEEE International Conference on (pp. 1–6). IEEE. (2017)Google Scholar
  35. 35.
    Niculescu, E.; Niculescu, M. C.; Purcaru, D. M.: Modelling the PWM SEPIC converter in discontinuous conduction mode. In: Proceedings of the 11th WSEAS International Conference on CIRCUITS (pp. 98–103). (2007)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNITK SurathkalMangaloreIndia

Personalised recommendations