Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6967–6976 | Cite as

Failure Detection of On-Load Tap-Changers Using a New Power-Based Algorithm

  • Behnam Feizifar
  • Omer UstaEmail author
Research Article - Electrical Engineering


This paper presents a novel arcing power-based algorithm to identify failures in operations of on-load tap-changers (OLTCs). An OLTC is the solely moving part of power transformers and thus highly prone to failure. Most of the OLTC defects are originated from abnormal arcing times leading to abnormal arcing energies. The proposed algorithm utilizes the power difference between the input and output terminals of transformer to estimate the OLTC arcing power. The integration of arcing power for a tap-changing operation results in an arcing energy. This arcing energy is estimated for each operation and used as an indication of OLTC failure. By this definition, whenever the estimated arcing energy exceeds a predefined value for a tap-changing event, it shows a failure in OLTC operation. The outcomes obtained from extensive simulation studies for different internal failures and external faults prove that any malfunction or failure in the operation of OLTC can be detected by the proposed method in a timely manner.


Arcing power Arcing time Failure detection On-load tap-changer Power transformer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors express their sincere gratitude and appreciation to Maschinenfabrik-Reinhausen (MR) GmbH from Germany for providing an OLTC to the EESLab of Istanbul Technical University and supporting this research project. We are also thankful to Istanbul Technical University for providing the necessary facilities for the study.


  1. 1.
    IEEE Standard Requirements for Tap Changers. IEEE Std C57.131-2012 (Revision of IEEE Std C57.131-1995) 1–73 (2012).
  2. 2.
    Martin, D.; Marks, J.; Saha, T.: Survey of Australian power transformer failures and retirements. IEEE Electr. Insul. Mag. 33(5), 16–22 (2017). CrossRefGoogle Scholar
  3. 3.
    Majchrzak, H.; Cichoń, A.; Borucki, S.: Application of the acoustic emission method for diagnosis of on-load tap changer. Arch. Acoust. 42(1), 29–35 (2017). CrossRefGoogle Scholar
  4. 4.
    Cichoń, A.; Boczar, T.; Frącz, P.; Zmarzły, D.: Detection of defects in on-load tap-changers using acoustic emission method. In: Proceedings of IEEE International Symposium on Electrical Insulation, pp. 184–188 (2012).
  5. 5.
    Hussain, A.; Lee, S.-J.; Choi, M.-S.; Brikci, F.: An expert system for acoustic diagnosis of power circuit breakers and on-load tap changers. Expert Syst. Appl. 42(24), 9426–9433 (2015). CrossRefGoogle Scholar
  6. 6.
    Rivas, E.; Burgos, J.C.; Garcia-Prada, J.C.: Vibration analysis using envelope wavelet for detecting faults in the OLTC tap selector. IEEE Trans. Power Deliv. 25(3), 1629–1636 (2010). CrossRefGoogle Scholar
  7. 7.
    Li, Q.; Zhao, T.; Zhang, L.; Lou, J.: Mechanical fault diagnostics of onload tap changer within power transformers based on hidden Markov model. IEEE Trans. Power Deliv. 27(2), 596–601 (2012). CrossRefGoogle Scholar
  8. 8.
    Duan, R.; Wang, F.: Fault diagnosis of on-load tap-changer in converter transformer based on time-frequency vibration analysis. IEEE Trans. Ind. Electron. 63(6), 3815–3823 (2016). CrossRefGoogle Scholar
  9. 9.
    Duan, X.; Zhao, T.; Li, T.; Liu, J.; Zou, L.; Zhang, L.: Method for diagnosis of on-load tap changer based on wavelet theory and support vector machine. J. Eng. 2017(13), 2193–2197 (2017). Google Scholar
  10. 10.
    Erbrink, J.J.; Gulski, E.; Smit, J.J.; Seitz, P.P.; Quak, B.; Leich, R.; Malewski, R.A.: On-load tap changer diagnosis—an off-line method for detecting degradation and defects: part 1. IEEE Electr. Insul. Mag. 26(5), 49–59 (2010). CrossRefGoogle Scholar
  11. 11.
    Erbrink, J.J.; Gulski, E.; Smit, J.J.; Leich, R.; Quak, B.; Malewski, R.A.: On-load tap changer diagnosis—an off-line method for detecting degradation and defects: part 2. IEEE Electr. Insul. Mag. 27(6), 27–36 (2011). CrossRefGoogle Scholar
  12. 12.
    Osmanbasic, E.; Skelo, G.: Tap changer condition assessment using dynamic resistance measurement. Procedia Eng. 202, 52–64 (2017). CrossRefGoogle Scholar
  13. 13.
    Duval, M.: The duval triangle for load tap changers, non-mineral oils and low temperature faults in transformers. IEEE Electr. Insul. Mag. 24(6), 22–29 (2008). CrossRefGoogle Scholar
  14. 14.
    Molavi, H.; Zahiri, A.; Anvarizadeh, K.: Condition assessment and fault diagnosis of two load tap changers using dissolved gas analysis. In: 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), pp. 1–4 (2013).
  15. 15.
    Feizifar, B.; Usta, O.: A new arc-based model and condition monitoring algorithm for on-load tap-changers. Electr. Power Syst. Res. 167, 58–70 (2019). CrossRefGoogle Scholar
  16. 16.
    Khodabakhchian, B.: Modeling on-load tap changers in EMTP-RV. EMTP-RV Newslett. 1(1), 11–15 (2005)Google Scholar
  17. 17.
    Sybille, G.: SimPower Systems Toolbox 7.3. Mathworks Inc. (2006). Accessed 1 Sept 2006
  18. 18.
    Habedank, U.: Application of a new arc model for the evaluation of short-circuit breaking tests. IEEE Trans. Power Deliv. 8(4), 1921–1925 (1993). CrossRefGoogle Scholar
  19. 19.
    Cassie, A.M.: Arc rupture and circuit severity: a new theory. CIGRE, Report No. 102 (1939)Google Scholar
  20. 20.
    Mayr, O.: Beitraege zur Theorie des statischen und dynamischen Lichtbogens. Arch. Elektrotech. 37(H12), S588–S608 (1943)CrossRefGoogle Scholar
  21. 21.
    Haginomori, E.; Koshiduka, T.; Arai, J.; Ikeda, H.: Power System Transient Analysis: Theory and Practice using Simulation Programs (ATP-EMTP), pp. 105–130. Wiley, New York (2016). CrossRefGoogle Scholar
  22. 22.
    Redfern, M.A.; Checksfield, M.J.: A new pole slipping protection algorithm for dispersed storage and generation using the equal area criterion. IEEE Trans. Power Deliv. 10(1), 194–202 (1995). CrossRefGoogle Scholar
  23. 23.
    Redfern, M.A.; Usta, O.; Fielding, G.: Protection against loss of utility grid supply for a dispersed storage and generation unit. IEEE Trans. Power Deliv. 8(3), 948–954 (1993). CrossRefGoogle Scholar
  24. 24.
    Usta, O.; Bayrak, M.; Redfern, M.A.: A new digital relay for generator protection against asymmetrical faults. IEEE Trans. Power Deliv. 17(1), 54–59 (2002). CrossRefGoogle Scholar
  25. 25.
    Technical note, Transformer/line loss calculations. Schneider Electric. 70072-0153-08 (2011)Google Scholar
  26. 26.
    Redfern, M.A.; Usta, O.; Fielding, G.; Walker, E.P.: Power based algorithm to provide loss of grid protection for embedded generation. IEE Proc. Gen. Trans. Distrib. 141(6), 640–646 (1994). CrossRefGoogle Scholar
  27. 27.
    Abu-Hashim, R.; Burch, R.; Chang, G.; Grady, M.; Gunther, E.; Halpin, M.; Harziadonin, C.; Liu, Y.; Marz, M.; Ortmeyer, T.; Rajagopalan, V.; Ranade, S.; Ribeiro, P.; Sim, T.; Xu, W.: Test systems for harmonics modeling and simulation. IEEE Trans. Power Deliv. 14(2), 579–587 (1999). CrossRefGoogle Scholar
  28. 28.
    \(\text{OILTAP}^{\textregistered }\) V III 350 D. on-load tap-changer for regulating transformers. Maschinenfabrik Reinhausen GmbH, IN228/02 EN–10/11–F0018002 (2003). Accessed 25 Feb 2018
  29. 29.
    Thomas, R.; Lahaye, D.; Vuik, C.; van der Sluis, L.: Simulation of arc models with the block modelling method. In: Proceeding of International Conference on Power System Transients (IPST2015), Cavtat, Croatia (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations