Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 10, pp 8557–8571 | Cite as

Heterogeneous Traffic Simulation for Urban Streets Using Cellular Automata

  • Amit Kumar DasEmail author
  • Ujjal Chattaraj
Research Article - Civil Engineering
  • 31 Downloads

Abstract

This paper aims to develop a simulation model for heterogeneous traffic using cellular automata (CA). A detailed description of the developed CA model used to simulate heterogeneous traffic is presented. Heterogeneous traffic comprises of vehicles of different static and dynamic characteristics. Therefore, the developed model should be capable enough to include the characteristics of different types of vehicles. The results of simulation depict that not only the model includes heterogeneous traffic characteristics but real traffic behavior is also taken care of. The developed model is calibrated and validated using distance headway–speed relationship obtained from field data.

Keywords

Cellular automata Heterogeneous traffic Microscopic properties Macroscopic properties Parallel update scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nagel, K.; Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I2(12), 2221–2229 (1992)Google Scholar
  2. 2.
    Takayasu, M.; Takayasu, H.: 1/f noise in a traffic model. Fractals 1(04), 860–866 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Benjamin, S.C.; Johnson, N.F.; Hui, P.M.: Cellular automata models of traffic flow along a highway containing a junction. J. Phys. A Math. Gen. 29(12), 3119–3127 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Barlovic, R.; Santen, L.; Schadschneider, A.; Schreckenberg, M.: Metastable states in cellular automata for traffic flow. Eur. Phys. J. B Condens. Matter Complex Syst. 5(3), 793–800 (1998)CrossRefGoogle Scholar
  5. 5.
    Helbing, D.; Schreckenberg, M.: Cellular automata simulating experimental properties of traffic flow. Phys. Rev. E59(3), R2505–R2508 (1999)Google Scholar
  6. 6.
    Knospe, W.; Santen, L.; Schadschneider, A.; Schreckenberg, M.: Towards a realistic microscopic description of highway traffic. J. Phys. A Math. Gen. 33(48), L477–L485 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, X.; Wu, Q.; Jiang, R.: Cellular automaton model considering the velocity effect of a car on the successive car. Phys. Rev. E64(6), 066128 (2001)Google Scholar
  8. 8.
    Bham, G.H.; Benekohal, R.F.: A high fidelity traffic simulation model based on cellular automata and car-following concepts. Transp. Res. C Emerg. Technol. 12(1), 1–32 (2004)CrossRefGoogle Scholar
  9. 9.
    Clarridge, A.; Salomaa, K.: Analysis of a cellular automaton model for car traffic with a slow-to-stop rule. Theor. Comput. Sci. 411(38–39), 3507–3515 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Yang, H.; Deng, Y.; Jones, J.: Network division method based on cellular growth and physarum-inspired network adaptation. Int. J. Unconv. Comput. 13(6), 477–491 (2018)Google Scholar
  11. 11.
    Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. B Methodol. 28(4), 269–287 (1994)CrossRefGoogle Scholar
  12. 12.
    Celikoglu, H.B.: An approach to dynamic classification of traffic flow patterns. Comput. Aided Civ. Infrastruct. Eng. 28(4), 73–288 (2013)CrossRefGoogle Scholar
  13. 13.
    Celikoglu, H.B.: Dynamic classification of traffic flow patterns simulated by a switching multimode discrete cell transmission model. IEEE Trans. Intell. Transp. Syst. 15(6), 2539–2550 (2014)CrossRefGoogle Scholar
  14. 14.
    Silgu, M.A.; Celikoglu, H.B.: Clustering traffic flow patterns by fuzzy C-means method: some preliminary findings. In: International Conference on Computer Aided Systems Theory, 756–764, Springer, Cham (2015)Google Scholar
  15. 15.
    Celikoglu, H.B.; Silgu, M.A.: Extension of traffic flow pattern dynamic classification by a macroscopic model using multivariate clustering. Transp. Sci. 50(3), 966–981 (2016)CrossRefGoogle Scholar
  16. 16.
    Lan, L.W.; Chang, C.W.: Inhomogeneous cellular automata modeling for mixed traffic with cars and motorcycles. J. Adv. Transp. 39(3), 323–349 (2005)CrossRefGoogle Scholar
  17. 17.
    Mathew, T.V.; Gundaliya, P.; Dhingra, S.L.: Heterogeneous traffic flow modeling and simulation using cellular automata. Appl. Adv. Technol. Transp. 492–497 (2006)Google Scholar
  18. 18.
    Mallikarjuna, C.; Rao, K.R.: Identification of a suitable cellular automata model for mixed traffic. J. EastAsia Soc. Transp. Stud. 7, 2454–2469 (2007)Google Scholar
  19. 19.
    Gundaliya, P.J.; Mathew, T.V.; Dhingra, S.L.: Heterogeneous traffic flow modelling for an arterial using grid based approach. J. Adv. Transp. 42(4), 467–491 (2008)CrossRefGoogle Scholar
  20. 20.
    Mallikarjuna, C.; Rao, K.R.: Cellular automata model for heterogeneous traffic. J. Adv. Transp. 43(3), 321–345 (2009)CrossRefGoogle Scholar
  21. 21.
    Lan, L.W.; Chiou, Y.C.; Lin, Z.S.; Hsu, C.C.: Cellular automaton simulations for mixed traffic with erratic motorcycles’ behaviors. Phys. A Stat. Mech. Appl. 389(10), 2077–2089 (2010)CrossRefGoogle Scholar
  22. 22.
    Maurya, A.K.: Comprehensive approach for modeling of traffic streams with no lane discipline. In: 2nd International Conference on Models and Technologies for Intelligent Transportation Systems, Leuven, Belgium (2011)Google Scholar
  23. 23.
    Mallikarjuna, C.; Rao, K.R.: Heterogeneous traffic flow modelling: a complete methodology. Transportmetrica 7(5), 321–345 (2011)CrossRefGoogle Scholar
  24. 24.
    Vasic, J.; Ruskin, H.J.: Cellular automata simulation of traffic including cars and bicycles. Phys. A Stat. Mech. Appl. 391(8), 2720–2729 (2012)CrossRefGoogle Scholar
  25. 25.
    Pandey, G.; Rao, K.R.; Mohan, D.: A review of cellular automata model for heterogeneous traffic conditions. Traffic Granul. Flow’13 471–478 Springer, Cham (2015)Google Scholar
  26. 26.
    Kurnaz, I.: Urban traffic modeling with microscopic approach using cellular automata. Tehnički vjesnik 23(6), 1565–1570 (2016)Google Scholar
  27. 27.
    Pal, D.; Mallikarjuna, C.: Analysis of the effect of variable lateral gap maintaining behavior of vehicles on traffic flow modeling. Proc. Eng. 142, 198–204 (2016)CrossRefGoogle Scholar
  28. 28.
    Liu, Y.; Guo, J.; Taplin, J.; Wang, Y.: Characteristic analysis of mixed traffic flow of regular and autonomous vehicles using cellular automata. J. Adv. Transp. 2017, 1–10 (2017)Google Scholar
  29. 29.
    Pandey, G.; Rao, K.R.; Mohan, D.: Modelling vehicular interactions for heterogeneous traffic flow using cellular automata with position preference. J. Modern Transp. 25(3), 163–177 (2017)CrossRefGoogle Scholar
  30. 30.
    Arasan, V.T.; Koshy, R.Z.: Methodology for modeling highly heterogeneous traffic flow. J. Transp. Eng. 131(7), 544–551 (2005)CrossRefGoogle Scholar
  31. 31.
    Lv, W.; Song, W.G.; Liu, X.D.; Ma, J.: A microscopic lane changing process model for multilane traffic. Phys. A Stat. Mech. Appl. 392(5), 1142–1152 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chattaraj, U.; Seyfried, A.; Chakroborty, P.; Biswal, M.K.: Modelling single file pedestrian motion across cultures. Proc. Soc. Behav. Sci. 104, 698–707 (2013)CrossRefGoogle Scholar
  33. 33.
    AASHTO, : A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials, Washington, DC (2001)Google Scholar
  34. 34.
    AASHTO, : A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials, Washington, DC (2004)Google Scholar
  35. 35.
    Maurya, A.K.; Chakroborty, P.: CASIM: A realistic CA based traffic flow model. In: Proceedings of 11th World Conference on Transportation Research, Berkeley, California, USA (2007)Google Scholar
  36. 36.
    Abuamer, I.M.; Silgu, M.A.; Celikoglu, H.B.: Micro-simulation based ramp metering on Istanbul freeways: an evaluation adopting ALINEA. In: Intelligent Transportation Systems (ITSC), IEEE 19th International Conference on Intelligent Transportation Systems, 695–700 IEEE (2016)Google Scholar
  37. 37.
    Abuamer, I.M.; Sadat, M.; Silgu, M.A.; Celikoglu, H.B.: Analyzing the effects of driver behavior within an adaptive ramp control scheme: a case-study with ALINEA. In: Vehicular Electronics and Safety (ICVES), IEEE International Conference on Vehicular Electronics and Safety, 109–114 IEEE (2017)Google Scholar
  38. 38.
    Abuamer, I.M.; Celikoglu, H.B.: Local ramp metering strategy ALINEA: microscopic simulation based evaluation study on Istanbul freeways. Transp. Res. Proc. 22, 598–606 (2017)CrossRefGoogle Scholar
  39. 39.
    Celikoglu, H.B.; Dell’Orco, M.: A dynamic model for acceleration behaviour description in congested traffic. In Intelligent Transportation Systems, ITSC 2008, 11th International IEEE Conference on Intelligent Transportation Systems, 986–991 IEEE (2008)Google Scholar
  40. 40.
    Antoniou, C.; Barcelo, J.; Brackstone, M.; Celikoglu, H.B.; Ciuffo, B.; Punzo, V.; Sykes, P.; Toledo, T.; Vortisch, P.; Wagner, P.: Traffic simulation: case for guidelines. In: Brackstone, Punzo, (eds.) JRC Scientific and Technical Report, EUR 26534 EN. Publications Office of the European Union, Luxembourg (2014). ISBN 978-92-79-35578-3Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations